Skip to main content

Chromatin Immunoprecipitation Assays: Analyzing Transcription Factor Binding and Histone Modifications In Vivo

  • Protocol
  • First Online:
Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 523))

Abstract

Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene or a variety of genes at the same time. Availability of high-quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein, B. E., Humphrey, E. L., Liu, C. L. & Schreiber, S. L. (2004) The use of chromatin immunoprecipitation assays in genome-wide analyses of histone modifications, Methods Enzymol. 376, 349–60.

    Article  PubMed  CAS  Google Scholar 

  2. Kirmizis, A. & Farnham, P. J. (2004) Genomic approaches that aid in the identification of transcription factor target genes, Exp Biol Med (Maywood). 229, 705–21.

    CAS  Google Scholar 

  3. Johnson, K. D. & Bresnick, E. H. (2002) Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation, Methods. 26, 27–36.

    Article  PubMed  CAS  Google Scholar 

  4. Umlauf, D., Goto, Y. & Feil, R. (2004) Site-specific analysis of histone methylation and acetylation, Methods Mol Biol. 287, 99–120.

    PubMed  CAS  Google Scholar 

  5. Kouzarides, T. (2002) Histone methylation in transcriptional control, Curr Opin Genet Dev. 12, 198–209.

    Article  PubMed  CAS  Google Scholar 

  6. Spencer, V. A., Sun, J. M., Li, L. & Davie, J. R. (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding, Methods. 31, 67–75.

    Article  PubMed  CAS  Google Scholar 

  7. Stallcup, M. R. (2001) Role of protein methylation in chromatin remodeling and transcriptional regulation, Oncogene. 20, 3014–20.

    Article  PubMed  CAS  Google Scholar 

  8. Weinmann, A. S. & Farnham, P. J. (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation, Methods. 26, 37–47.

    Article  PubMed  CAS  Google Scholar 

  9. Kondo, Y., Shen, L., Yan, P. S., Huang, T. H. & Issa, J. P. (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation, Proc Natl Acad Sci U S A. 101, 7398–403.

    Article  PubMed  CAS  Google Scholar 

  10. Farnham, P. J. (2002) In vivo assays to examine transcription factor localization and target gene specificity, Methods. 26, 1–2.

    Article  PubMed  CAS  Google Scholar 

  11. Dasgupta P. & Chellappan, S. P. (2005) Chromatin immunoprecipitation Assays: Molecular analysis of Chromatin modification and Gene Regulation., Humana Press.

    Google Scholar 

  12. Wells, J. & Farnham, P. J. (2002) Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation, Methods. 26, 48–56.

    Article  PubMed  CAS  Google Scholar 

  13. Ren, B. & Dynlacht, B. D. (2004) Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors, Methods Enzymol. 376, 304–15.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, S., Fusaro, G., Padmanabhan, J. & Chellappan, S. P. (2002) Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression, Oncogene. 21, 8388–96.

    Article  PubMed  CAS  Google Scholar 

  15. Thorne, A. W., Myers, F. A. & Hebbes, T. R. (2004) Native chromatin immunoprecipitation, Methods Mol Biol. 287, 21–44.

    PubMed  CAS  Google Scholar 

  16. Dasgupta, P., Sun, J., Wang, S., Fusaro, G., Betts, V., Padmanabhan, J., Sebti, S. M. & Chellappan, S. P. (2004) Disruption of the Rb-Raf-1 interaction inhibits tumor growth and angiogenesis, Mol Cell Biol. 24, 9527–41.

    Article  PubMed  CAS  Google Scholar 

  17. Dasgupta, P., Betts, V., Rastogi, S., Joshi, B., Morris, M., Brennan, B., Ordonez-Ercan, D. & Chellappan, S. (2004) Direct binding of apoptosis signal-regulating kinase 1 to retinoblastoma protein: novel links between apoptotic signaling and cell cycle machinery, J Biol Chem. 279, 38762–9.

    Article  PubMed  CAS  Google Scholar 

  18. Joshi B., Ordonez-Ercan D., Dasgupta P. & Chellappan, S. (2004) Induction of human metallothionein 1 g promoter by VEGF and heavy metals: Differential involvement of E2F and MTF transcription factors., Oncogene. 26, 3572–3581.

    Google Scholar 

  19. Hebbes, T. R., Clayton, A. L., Thorne, A. W. & Crane-Robinson, C. (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain, Embo J. 13, 1823–30.

    PubMed  CAS  Google Scholar 

  20. Litt, M. D., Simpson, M., Recillas-Targa, F., Prioleau, M. N. & Felsenfeld, G. (2001) Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci, Embo J. 20, 2224–35.

    Article  PubMed  CAS  Google Scholar 

  21. Buck, M. J. & Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments, Genomics. 83, 349–60.

    Article  PubMed  CAS  Google Scholar 

  22. Robyr, D. & Grunstein, M. (2003) Genomewide histone acetylation microarrays, Methods. 31, 83–9.

    Article  PubMed  CAS  Google Scholar 

  23. Roh, T. Y., Ngau, W. C., Cui, K., Landsman, D. & Zhao, K. (2004) High-resolution genome-wide mapping of histone modifications, Nat Biotechnol. 22, 1013–6.

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez, B. A. & Huang, T. H. (2005) Tilling the chromatin landscape: emerging methods for the discovery and profiling of protein-DNA interactions, Biochem Cell Biol. 83, 525–34.

    Article  PubMed  CAS  Google Scholar 

  25. Oberley, M. J., Tsao, J., Yau, P. & Farnham, P. J. (2004) High-throughput screening of chromatin immunoprecipitates using CpG-island microarrays, Methods Enzymol. 376, 315–34.

    Article  PubMed  CAS  Google Scholar 

  26. Bieda, M., Xu, X., Singer, M. A., Green, R. & Farnham, P. J. (2006) Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome, Genome Res. 16, 595–605.

    Article  PubMed  CAS  Google Scholar 

  27. Jin, V. X., Rabinovich, A., Squazzo, S. L., Green, R. & Farnham, P. J. (2006) A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data – a case study using E2F1, Genome Res. 16, 1585–95.

    Article  PubMed  CAS  Google Scholar 

  28. Fusaro, G., Dasgupta, P., Rastogi, S., Joshi, B. & Chellappan, S. P. (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling, J Biol Chem. 18, 18.

    Google Scholar 

  29. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast, Genes Dev. 11, 83–93.

    Article  PubMed  CAS  Google Scholar 

  30. Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. (1998) c-Myc target gene specificity is determined by a post-DNA binding mechanism, Proc Natl Acad Sci U S A. 95, 13887–92.

    Article  PubMed  CAS  Google Scholar 

  31. Boyd, K. E. & Farnham, P. J. (1999) Coexamination of site-specific transcription factor binding and promoter activity in living cells, Mol Cell Biol. 19, 8393–9.

    PubMed  CAS  Google Scholar 

  32. Dahl, J. A. & Collas, P. (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells, Stem Cells. 25, 1037–46.

    Article  PubMed  CAS  Google Scholar 

  33. Wells, J., Graveel, C. R., Bartley, S. M., Madore, S. J. & Farnham, P. J. (2002) The identification of E2F1-specific target genes, Proc Natl Acad Sci U S A. 99, 3890–5.

    Article  PubMed  CAS  Google Scholar 

  34. Kirmizis, A., Bartley, S. M., Kuzmichev, A., Margueron, R., Reinberg, D., Green, R. & Farnham, P. J. (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27, Genes Dev. 18, 1592–605.

    Article  PubMed  CAS  Google Scholar 

  35. Chaya, D. & Zaret, K. S. (2004) Sequential chromatin immunoprecipitation from animal tissues, Methods Enzymol. 376, 361–72.

    Article  PubMed  CAS  Google Scholar 

  36. Forsberg, E. C., Downs, K. M. & Bresnick, E. H. (2000) Direct interaction of NF-E2 with hypersensitive site 2 of the beta-globin locus control region in living cells, Blood. 96, 334–9.

    PubMed  CAS  Google Scholar 

  37. Luo, R. X. & Dean, D. C. (1999) Chromatin remodeling and transcriptional regulation, J Natl Cancer Inst. 91, 1288–94.

    Article  PubMed  CAS  Google Scholar 

  38. Im, H., Grass, J. A., Johnson, K. D., Boyer, M. E., Wu, J. & Bresnick, E. H. (2004) Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation, Methods Mol Biol. 284, 129–46.

    PubMed  CAS  Google Scholar 

  39. Blais, A. & Dynlacht, B. D. (2004) Hitting their targets: an emerging picture of E2F and cell cycle control, Curr Opin Genet Dev. 14, 527–32.

    Article  PubMed  CAS  Google Scholar 

  40. Harbour, J. W. & Dean, D. C. (2000) Chromatin remodeling and Rb activity, Curr Opin Cell Biol. 12, 685–9.

    Article  PubMed  CAS  Google Scholar 

  41. Harbour, J. W. & Dean, D. C. (2001) Corepressors and retinoblastoma protein function, Curr Top Microbiol Immunol. 254, 137–44.

    PubMed  CAS  Google Scholar 

  42. Skowronska-Krawczyk, D., Ballivet, M., Dynlacht, B. D. & Matter, J. M. (2004) Highly specific interactions between bHLH transcription factors and chromatin during retina development, Development. 131, 4447–54.

    Article  PubMed  CAS  Google Scholar 

  43. Elefant, F., Cooke, N. E. & Liebhaber, S. A. (2000) Targeted recruitment of histone acetyltransferase activity to a locus control region, J Biol Chem. 275, 13827–34.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson, K. D., Christensen, H. M., Zhao, B. & Bresnick, E. H. (2001) Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter, Mol Cell. 8, 465–71.

    Article  PubMed  CAS  Google Scholar 

  45. Nielsen, S. J., Schneider, R., Bauer, U. M., Bannister, A. J., Morrison, A., O'Carroll, D., Firestein, R., Cleary, M., Jenuwein, T., Herrera, R. E. & Kouzarides, T. (2001) Rb targets histone H3 methylation and HP1 to promoters, Nature. 412, 561–5.

    Article  PubMed  CAS  Google Scholar 

  46. Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R. A. & Dynlacht, B. D. (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints, Genes Dev. 16, 245–56.

    Article  PubMed  CAS  Google Scholar 

  47. Morimoto, R. I. (2002) Dynamic remodeling of transcription complexes by molecular chaperones, Cell. 110, 281–4.

    Article  PubMed  CAS  Google Scholar 

  48. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription, Cell. 103, 843–52.

    Article  PubMed  CAS  Google Scholar 

  49. Tse, C., Sera, T., Wolffe, A. P. & Hansen, J. C. (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III, Mol Cell Biol. 18, 4629–38.

    PubMed  CAS  Google Scholar 

  50. Noma, K., Allis, C. D. & Grewal, S. I. (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries, Science. 293, 1150–5.

    Article  PubMed  CAS  Google Scholar 

  51. Gregory, R. I., Randall, T. E., Johnson, C. A., Khosla, S., Hatada, I., O'Neill, L. P., Turner, B. M. & Feil, R. (2001) DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2af1-rs1, Mol Cell Biol. 21, 5426–36.

    Article  PubMed  CAS  Google Scholar 

  52. Gregory, R. I. & Feil, R. (1999) Analysis of chromatin in limited numbers of cells: a PCR-SSCP based assay of allele-specific nuclease sensitivity, Nucleic Acids Res. 27, e32.

    Article  PubMed  CAS  Google Scholar 

  53. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms, Proc Natl Acad Sci U S A. 86, 2766–70.

    Article  PubMed  CAS  Google Scholar 

  54. Uejima, H., Lee, M. P., Cui, H. & Feinberg, A. P. (2000) Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios, Nat Genet. 25, 375–6.

    Article  PubMed  CAS  Google Scholar 

  55. Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q. & Farnham, P. J. (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters, Mol Cell Biol. 21, 6820–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Chellappan lab is supported by the grants CA63136, CA77301 and CA127725 from the NCI.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pillai, S., Dasgupta, P., Chellappan, S.P. (2009). Chromatin Immunoprecipitation Assays: Analyzing Transcription Factor Binding and Histone Modifications In Vivo. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 523. Humana Press. https://doi.org/10.1007/978-1-59745-190-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-190-1_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-873-7

  • Online ISBN: 978-1-59745-190-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics