Skip to main content

Phytoremediation of Arsenic-Contaminated Soil in China

  • Protocol
Phytoremediation

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

Arsenic (As) is a common pollutant of concern in environmental clean up because its contamination is recognized to lead to a variety of cancers, cardiovascular diseases, diabetes, and other health problems. Because Pteris vittata L. was discovered to hyperaccumulate As from soils, As hyperaccumulators have been attracting more and more attention and are proposed to be promising for phytoremediation. Although laboratory studies on the tolerance and accumulation of As by the hyperaccumulators are available, little information about field performance of phytoremediation using the plants is available. Here, the research priorities for As-phytoremediation technologies, As accumulation, and the relationships between As and other elements in the plants, are discussed. Primarily, however, results from a pilot field study on phytoremediation of As-contaminated soil in Chenzhou City of Hunan Province, China are summarized. It is concluded that P. vittata can effectively phytoextract As from an As-contaminated site under a subtropical climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fergusson, J. E. (1990) The Heavy Elements: Chemistry, Environmental Impacts and Health Effects. Pergamon Press, Oxford, UK, p. 614.

    Google Scholar 

  2. Gidhagen, L., Kahelin, H., Schmidt-Thomé, P., and Johansson, C. (2002) Anthropogenic and natural levels of arsenic in PM10 in Central and Northern Chile. Atmos. Environ. 30, 3803–3817.

    Google Scholar 

  3. Lynch, J. A., McQuaker, N. R., and Brown, D. F. (1980) ICP-AES analysis and the composition of airborne and soil materials in the vicinity of a lead/zinc smelter complex. J. Air Pollut. Control Assoc. 30, 257–260.

    CAS  Google Scholar 

  4. Mitchell, P. and Barr, D. (1995) The nature and significance of public exposure to arsenic: a review of its relevance to south west England. Environ. Geochem. Health 17, 57–82.

    Article  CAS  Google Scholar 

  5. Pandey, P. K., Yadav, S., Nair, S., and Bhui, A. (2002) Arsenic contamination of theenvironment: a new perspective from central-east India. Environ. Int. 28, 235–245.

    Article  CAS  Google Scholar 

  6. Liao, X.-Y., Chen, T.-B., Xie, H., and Liu, Y.-R. (2005) Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ. Int. 31, 791–798.

    Article  CAS  Google Scholar 

  7. Rahman, M. M., Paul, K., Chowdhury, U. K., Biswas, B. K., Lodh, D., Basu, G. K., Roy, S., Das, R., Ahmed, B., Kaies, I., Barua, A. K., Palit, S. K., Quamruzzaman, Q., and Chakraborti, D., (2001) Current status of arsenic pollution and health impacts in West Bengal and Bangladesh. An International Workshop on Arsenic Pollution of Drinking Water in South Asia and China, Jinji Roumu Kaikan Ohsaki, Shinawawa, Tokyo, Japan, March 10, 2001.

    Google Scholar 

  8. Woolson, E. A. (1973) Arsenic phytotoxicity and uptake in six vegetable crops. Weed Sci. 21, 524–527.

    CAS  Google Scholar 

  9. United States Environmental Protection Agency (1997) Recent Development for In-situ Treatment of Metal Contaminated Soils. Office of Solid Waste and Emergency Response. EPA-542-R-97-004, p.8.

    Google Scholar 

  10. Roychowdhury, T., Uchino, T., Tokunaga, H., and Ando, M. (2002) Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India. Chemosphere 49, 605–618.

    Article  CAS  Google Scholar 

  11. Smith, E., Naidu, R., and Alston, A. M. (2002) Chemistry of arsenic in soils: II. Effectof phosphorous, sodium and calcium on arsenic sorption. J. Environ. Qual. 31, 557–563.

    Article  CAS  Google Scholar 

  12. Chen, T.-B. (1990) Arsenic in soil-plant system and its effect on rice growth and development. PhD dissertation, Chinese Academy of Agricultural Sciences, Beijing, China, p. 92.

    Google Scholar 

  13. Chen, T.-B., Liu, G.-L., Xie, K.-Y., and Gan, S.-W. (1992) Arsenic contents in soils and crops in high As district of Hunan Province. Soil Fertil. 2, 1–4.

    CAS  Google Scholar 

  14. Liao, X.-Y., Chen, T.-B., Xiao, X.-Y., Huang, Z.-C., An, Z.-C., Mo, L.-Y., Li, W. X., Chen, H., and Zheng, Y. M. (2003) Spatial distribution charactersistics of arsenic in contaminated paddy soils. Geog. Res. 22, 635–643.

    Google Scholar 

  15. United States Environmental Protection Agency (2002) Arsenic Treatment Technologies for Soil, Waste, and Water. Office of Solid Waste and Emergency Response. EPA-542-R-02-004.

    Google Scholar 

  16. Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., and Reeves, R. D. (1994) The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Res. Conserv. Recyc. 11, 41–49.

    Google Scholar 

  17. Chaney, R. L., Brown, S. L., Li, Y. M., Angle, J. S., Homer, F. A., and Green, C.E. (1995) Potential use of metal hyperaccumulators. Min. Environ. Mag. 3, 9–11.

    Google Scholar 

  18. Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Angle, J. S., and Baker, A. J. M. (1997) Phytoremediation of soil metals. Curr. Opin. Biotech. 8, 279–284.

    Article  CAS  Google Scholar 

  19. Blaylock, M. J., Muhr, E., Page, K., Montes, G., Vasudev, D., and Kapulnik, Y. (1996) Phytoremediation of lead contaminated soil at a Brownfield site in New Jersey. Proceeding of Am. Chem. Soc., Birmingham, AL, Sept. 9–11.

    Google Scholar 

  20. Salt, D. E., Blaylock, M, Kumar, N. P., et al. (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13, 468–474.

    Article  CAS  Google Scholar 

  21. Baker, A. J. M., Reeves, R. D., and McGrath, S. P. (1991) In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants: a feasibility study. In: In Situ Bioreclamation, (Hinchee, R. E. and Olfenbuttel, R. F.eds.), Butterworth, Heinemann, Boston, MA, pp. 600–605.

    Google Scholar 

  22. Brown, S. L., Chaney, R. L., Angle, J. S., and Baker, A. J. M. (1995) Zinc and cadmium 21 uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ. Sci. Technol. 29, 1581–1585.

    Article  CAS  Google Scholar 

  23. Chen, T.-B. (1997) Ecological study on genetic difference in tolerance of plants to arsenic. A proposal submitted to National Natural Science Foundation of China for grant application, Institute of Geography, Chinese Academy of Sciences Beijing, China. pp. 15.

    Google Scholar 

  24. Chen, T.-B., Wei, C.-Y., Huang, Z.-C., Huang, Q.-F., Lu, Q.-G., and Fan, Z.-L. (2002) Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chinese Sci. Bull. 47, 902–903.

    Article  CAS  Google Scholar 

  25. Chen, T.-B. and Wei, C.-Y. (2000) Arsenic hyperaccumulation in some plant species in South China. In: Proceedings of International Conference of Soil Remediation, (Luo, Y.-M. et al.eds.), Hangzhou, Zhejiang, China from October 15-19, 2000, pp. 194–195.

    Google Scholar 

  26. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y. and Kennelley, E. D. (2001) A fern that hyperaccumulates arsenic. Nature 409, 579.

    Article  CAS  Google Scholar 

  27. Liebig, G. F.m Jr. (1973) Arsenic. Diagnostic Criteria for Plants and Soils (Chapman, H. D.ed.), Quality Printing Company Inc., TX, Riverside California, USA, pp. 13–23.

    Google Scholar 

  28. Kabata-Pendias, A. and Pendias, H. (eds.) (1991) Trace Elements in Soils and Plants. CRC Press, Boca Raton, FL, pp. 309.

    Google Scholar 

  29. Liao, X.-Y., Chen, T.-B., Lei, M., Huang, Z.-C., Xiao, X.-Y., and An, Z.-Z. (2004) Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils. Plant Soil, 109–111.

    Google Scholar 

  30. Allinson, G., Turoczy, N. J., Kelsall, Y., et al. (2000) Mobility of the constituents ofchromated copper arsenate in a shallow sandy soil. New Zeal. J. Agr. Res. 43, 149–156.

    Article  CAS  Google Scholar 

  31. Galasso, J. L., Siegel, F. R., and Kravitz, J. H. (2000) Heavy metals in eight 1965 cores from the Novaya Zemlya Trough, Kara Sea, Russian Arctic. Mar. Pollut. Bull. 140, 839–852.

    Article  Google Scholar 

  32. Kalbitz, K. and Wennrich, R. (1998) Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Sci. Total Environ. 209, 27–39.

    Article  CAS  Google Scholar 

  33. Tack, F. M. G., Verloo, M. G., Vanmechelen, M., and Van, R. E. (1997) Baseline concentration levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Sci. Total Environ. 201, 113–123.

    Article  CAS  Google Scholar 

  34. Baker, A. J. M. and Brooks, R. R. (1989) Terrestrial higher plants which hyperaccumulatemetallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81.

    CAS  Google Scholar 

  35. Liao, X.-Y., Chen, T.-B., Xie, H., and Xiao, X.-Y. (2004) Effect of application of P fertilizer on efficiency of As removal in contaminated soil using phytoremediation: Field demonstration. Acta Scient. Circumst. 24, in press.

    Google Scholar 

  36. Siddipi, M. Y., Malhotram, B., Xiangjia, M., and Glass, A. D. M. (2002) Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. J. Plant Nutr. Soil Sci. 165, 191–197.

    Article  Google Scholar 

  37. Liao, X.-Y., Chen, T.-B. Xiao, X.-Y., Yun, X-L, Zhai, L.-M., and Wu, B., and Xie, H. (2006) Influences of the form of nitrogen fertilization on the removal efficiency of arsenic from soils using Chinese brake. Selecting appropriate forms of nitrogen fertilizer to enhance arsenic removal from soil using Pteris vittata: A new approach in phytoremediation. Acta Ecol. Sin., chemosphere submitted.

    Google Scholar 

  38. Meharg, A. A., Naylor, J., and Macnair, M. R. (1994) Phosphorus nutrition of arsenatetolerantand nontolerant phenotypes of velvetgrass. J. Environ. Qual. 23, 234.

    Article  CAS  Google Scholar 

  39. Brolo, F., Guijarro, I., and Carbonell-Barrachina, A. A. (1999) Arsenic species: effects on and accumulation by tomato plants. J. Agric. Food. Chem. 47, 1247.

    Article  Google Scholar 

  40. Sharples, J. M., Meharg, A. A., Chambers, S. M., and Cairney, J. W. G. (2000) Evolution: symbiotic solution to arsenic contamination. Nature 404, 951.

    CAS  Google Scholar 

  41. Chen, T.-B., Fan, Z.-L., Lei, M., Huang, Z.-C., and Wei, C.-Y. (2002) Effect of phosphorus on arsenic uptake by As-hyperaccumulator Pteris vittata L. and its implications. Chinese Sci. Bull. 47, 1156–1159.

    Google Scholar 

  42. Woolson, E. A., Axley, J. H., and Kearney, P. C. (1971) The chemistry and phytotoxicity of arsenic in soils. I. Contaminated field soils. Soil Sci. Soc. Am. J. 35, 938–943.

    Article  Google Scholar 

  43. Onken, B. M. and Hossner, L. R. (1995) Plant uptake and determination of arsenic species in soil solution under flooded conditions. J. Environ. Qual. 24, 373–381.

    Article  CAS  Google Scholar 

  44. Liao, Z.-J. (ed.) (1992) Environmental Chemistry and Biological Effect of Trace Elements. Environmental Science Press, Beijing, P.R. China, pp. 162.

    Google Scholar 

  45. Liao, X.-Y., Xiao, X.-Y., and Chen, T.-B. (2003) Effects of Ca and As addition on As, P and Ca uptake by hyperaccumulator Pteris vittata L. under sand culture. Acta Ecol. Sin. 23, 2057–2065.

    Google Scholar 

  46. Xiao, X.-Y., Liao, X.-Y., Chen, T.-B., and Zhang, Y.-Z. (2003) Effects of arsenic and calcium on metal accumulation and translocation in Pteris vittata L. Acta Ecol. Sin. 23, 1477–1487.

    Google Scholar 

  47. An, Z.-Z. (2004) Tolerance of Pteris vittata L. to cadmium, lead, copper and zinc and effect of phosphate on arsenate, arsenite uptake. Working Report of Postdoctoral Research. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, p. 90.

    Google Scholar 

  48. An, Z.-Z., Chen, T.-B., Lei, M., Xiao, X.-Y., and Liao, X.-Y. (2003) Tolerance of Pteris vittata L. to Pb, Cu and Zn. Acta Ecol. Sin. 23, 2594–2598.

    Google Scholar 

  49. Ma, L.-Y. (2004) Exploration for improving the ability of arsenic accumulation in Chinese brake fern and in vitro propagation of the fern. Working Report of Postdoctoral Research. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing, China, p. 90.

    Google Scholar 

  50. Li, W.-X. (2004) Studies on the arsenic distribution in Chinese brake and the two ways to improve the phytoextraction efficiency of arsenic. Working Report of Postdoctoral Research. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, p. 80.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Grant for Excellent Young Scientists (grant no. 40325003), the National High-Tech R & D Program (no. 2001AA6450), the China State Program for Basic Research (no. 2002CCA 03800), and the National Natural Science Foundation of China (grant no. 4023 2022). The authors wish to thank Dr. S. R. Tang of Zhejiang University for his help in preparation of the manuscript.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tong-Bin, C. et al. (2007). Phytoremediation of Arsenic-Contaminated Soil in China. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics