Skip to main content
Log in

The nature and significance of public exposure to arsenic: a review of its relevance to South West England

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In South West England, more than two hundred years of intensive exploitation of metalliferous ore deposits, combined with the natural processes of pedogenesis from mineral-rich parent rocks, has resulted in the creation of a aignificant area of arsenic-contaminated wastes and soils. The scale of arsenic dispersion by natural and anthropogenic processes is such that 722 km2 of land contains concentrations of arsenic in excess of 110 μg g−1, more than twice the maximum that might be expected in a normal soil.

The general rationale for the clean-up of derelict and contaminated mining sites often includes aesthetic factors and the desirability of preventing the dispersion of contaminants beyond the site boundaries. Only in extreme cases is public health directly invoked as justification for remediation. In South West England, if arsenic constitutes a genuine threat to the public, an increased rate of site remediation would be justified. The primary purpose of this review is to establish whether or not widespread arsenic contamination (principally of soils) has any measurable effects on public health in South West England, and how this might affect current contaminated site remediation policy. The review is based on data from previous research in the region, and other relevant international studies of mining and smelting communities, and other populations exposed to elevated arsenic concentrations. The literature reviewed also includes the determination of the extent and sources of contamination, and pathways between source and man.

While the contamination of potable waters in some countries has led to measurable health effects, this scenario has not yet been identified in South West England, and there is little reason to believe that significantly contaminated potable water supplies would escape detection for extended periods of time under the current monitoring regime.

In relative terms (based on both globaland local data), one of the most significant links between contaminated soils and humans appears to be contaminated food stuffs. In absolute terms, such exposure is low due to the natural constraints on arsenic uptake by herbage, cereal crops and vegetables, and the food chain does not appear to have been significantly compromised in South West England. Chronic health effects are unlikely as excessive arsenic concentrations in locally grown food crops remain rare.

With the problems of confounding medical and social factors, it is not surprising that studies in South West England have failed to identify chronic exposure to arsenic at very low concentrations as a significant health risk. Those studies that indicate otherwise do not stand up to close scrutiny. It appears that the number of additional deaths arising from the widespread arsenic contamination in South West England is small. The relative benefits of a costly statistical study to actually determine the number of additional deaths might be considered minimal, but one major area could benefit from further studies: the sensitivity of certain population sub-groups to environmental arsenic exposure. Of particular interest are children, for whom significant exposure to arsenic via soil ingestion may be occurring.

Based on available information, there appears to be no justification for a large programme of site remediation. Resources should, however, be expended on enlightening the general public, and private and governmental organisations as regards the gap between the perceived and actual significance of arsenic contamination in South West England.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdrashitova, S.A., Mynbaeva, B.N. and Ilyaletdinov, A.N. 1981. Oxidation of arsenic by the heterotrophic bacteriaPseudomonas putida andAlcaligenes eutrophus.Mikrobiologiya,50, 41–45.

    CAS  Google Scholar 

  • Abrahams, P.W. and Thornton, I. 1987. Distribution and extent of land contaminated by arsenic and associated metals in mining regions of southwest England.Trans. Inst. Min. Metall. (Sect B: App Earth Sci),96, 1–8.

    Google Scholar 

  • Alexander, M. 1978.Introduction to Soil Microbiology. Wiley, New York.

    Book  Google Scholar 

  • Alloway,B.J. 1990. Soil processes and the behaviour of metal. In: B.J. Alloway (ed.),Heavy Metals in Soils, pp.7–28. Blackie.

  • American Cancer Society 1989.Facts and Figures.

  • Andersen, O. 1983. Effects of coal combustion products on sister chromatid exchanges (SCE) in a macrophage-like cell line.Environmental Health Perspectives,47, 239–253.

    Article  CAS  Google Scholar 

  • Anderson, E., Browne, N. and Duletsky, S. 1985. Report to US EPA Office of Health and Environmental Assessment.Development of statistical distributions or ranges of standard factors used in exposure assessments. EPA-600/8-85/010. Washington, D.C.

  • Andreae, M.O. and Woolson, E.A. 1983. In: Lederer, W.H. and Fensterheim, R.J. (eds.),Arsenic — Industrial, Biomedical and Environmental Perspectives, p.378 and p.393. Van Nostrand Reinhold Co., New York.

  • Binder, S. 1987. US Department of Health and Human services. Memo regarding Mill Creek pre- and post-move urinary arsenic levels.

  • Blasco, F., Gaudin, C. and Jeanjean, R. 1971. Absorption of arsenate ions byChlorella. Partial reduction of arsenate to arsenite.CR Acad. Sci. (Paris), Series D,273, 812–815.

    CAS  Google Scholar 

  • Bowen, H.J.M. 1979.Environmental Chemistry of the Elements. Academic Press, London.

    Google Scholar 

  • Bowie, S.H.U. and Thornton, I. 1985.Environmental Geochemistry and Health. Reidel, Lancaster.

    Book  Google Scholar 

  • Brown, C.C. and Chu, K.C. 1983. A new method for the analysis of cohort studies: implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure.Environmental Health Perspectives,50,293–308.

    Article  CAS  Google Scholar 

  • Buchet, J.P., Lauwerys, R. and Roels, H. 1981a. Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers.Int. Arch. Occ. Envir. Health,48, 111–118.

    Article  CAS  Google Scholar 

  • Buchet, J.P., Lauwerys, R. and Roels, H. 1981b. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate or dimethylarsinate.Int. Arch. Occ. Envir. Health,48, 71–79.

    Article  CAS  Google Scholar 

  • Button, D.K., Dunker, S.S. and Moore, M.L. 1973. Continuous culture ofRhodotorula rubra: kinetics of phosphate-arsenate uptake, inhibition and phosphate-limited growth.J. Bact.,113, 599–611.

    CAS  Google Scholar 

  • Calabrese, E.J., Pastides, H. and Barnes, R. 1988. How much soil do young children ingest: an epidemiological study. Draft report to Syntex Corp, Amherst, University of Massachusetts.

  • Campbell, J.A., Stark, J.H. and Carlton-Smith, C.H. 1985. Effects of arsenic in sludge applied to soil. In:Proc. Int Symp. on Heavy Metals in the Environment,1, pp 478–480. Athens.

  • Canadian Council of Ministers for the Environment. 1991. Interim Canadian Environmental Quality: Criteria for Contaminated Sites. Report COME EPC-CS34.

  • Challenger, F. 1945. Biological methylation.Chem. Rev.,36, 315–361.

    Article  CAS  Google Scholar 

  • Challenger, F. 1951. Biological methylation.Adv. Enzymol.,12, 429–491.

    CAS  Google Scholar 

  • Cheng, C-N. and Focht, D.D. 1979. Production of arsine and methylarsine in soil and in culture.App. Env. Microbiol.,38, 494–498.

    CAS  Google Scholar 

  • Chilvers, D.C. and Peterson, P.J. 1987. In: Hutchinson, T.C. and Meema, K.M. (eds.),Lead, Mercury, Cadmium and Arsenic in the Environment, Chap. 17. John Wiley, New York.

  • Cohen, H.E. 1978. Report of discussion at February 1978 IMM General Meeting and general contributed remarks.Trans. Inst. Min. Metall.,87, A124.

    Google Scholar 

  • Colbourn, P., Alloway, B.J. and Thornton, I. 1975. Arsenic and heavy metals in soils associated with regional geochemical anomalies in south-west England.Sci. Tot. Envir.,4, 359–363.

    Article  CAS  Google Scholar 

  • COSHH (Control of Substances Hazardous to Health). 1990. Arsenic.Croner's Substances Hazardous to Health, pp.3–46. Croner Publications Ltd.

  • Cox, D.P. and Alexander, M. 1973. Effect of phosphate and other anions on trimethylarsine formation by Candida humicola.App. Microbiol.,25, 408–413.

    CAS  Google Scholar 

  • Cox, D.P. and Alexander, M. 1973a. Production of trimethylarsine gas from various arsenic compounds by three sewage fungi.Bull. Environ. Contam. Toxicol.,9, 84–88.

    Article  CAS  Google Scholar 

  • Cox, D.P. and Alexander, M. 1974. Factors affecting trimethylarsine and dimethylselenide formation byCandida humicola.J. Microbiol.,1, 136–144.

    CAS  Google Scholar 

  • Crecelius, E.A. 1977. Changes in the chemical speciation of arsenic following ingestion by man.Environmental Health Perspectives,19, 147–150.

    Article  CAS  Google Scholar 

  • Crounse, R.G., Pories, W.J., Bray, J.T. and Mauger, R.L. 1983. Geochemistry and man: health and disease. 2. Elements possibly essential, those toxic and others. In: Thornton, I. (ed.),Applied Environmental Geochemistry, pp.309–333. Academic Press, London.

    Google Scholar 

  • Culbard, E.B. and Johnson, L.R. 1984. Elevated arsenic concentrations in house dusts located in a mineralised area of south-west England; implications for health. In: Hemphill, D.D. (ed.),Trace Substances in Environmental Health, XVIII, pp.311–319. University of Missouri, Columbia.

    Google Scholar 

  • Cullen, W.R. and Reimer, K.J. 1989. Arsenic speciation in the environment.Chem. Rev.,89, 713–764.

    Article  CAS  Google Scholar 

  • DaCosta, E.W.B. 1971. Suppression of the inhibitory effects of arsenic compounds by phosphate.Nature (London),231, 32.

    CAS  Google Scholar 

  • DaCosta, E.W.B. 1972. Variation in the toxicity of arsenic compounds to microorganisms and the suppression of the inhibitory effects by phosphate.App. Microbiol.,23, 46–53.

    CAS  Google Scholar 

  • Davies, B.E. 1971. Trace metal content of soils affected by base metal mining in the West of England.Oikos,22, 366–372.

    Article  CAS  Google Scholar 

  • Deuel, L.E. and Swoboda, A.R. 1972. Arsenic solubility in a reduced environment.Soil Sci. Soc. Am. Proc.,36, 276–278.

    Article  CAS  Google Scholar 

  • Dines, H.G. 1956.The metalliferous mining region of south-west England, Vol. 1, pp.20–24. HMSO, London.

    Google Scholar 

  • Do, E. 1991.Private Water Supplies. Circular 24/91. HMSO, London.

    Google Scholar 

  • Doull, J., Klaasen, C.D. and Amdur, M.O. 1980.Casarett and Doull's Toxicology. The basic science of poisons. Macmillan Publishing Co, New York.

    Google Scholar 

  • Edwards, R.P. 1994. Camborne School of Mines, UK,personal communication.

  • Ehrlich, H.L. 1963. Bacterial action on orpiment.Econ. Geol.,58, 991–994.

    Article  CAS  Google Scholar 

  • Ehrlich, H.L. 1964. Bacterial oxidation of arsenopyrite and enargite.Econ. Geol.,59, 1306–1312.

    Article  CAS  Google Scholar 

  • Ehrlich, H.L. 1978. Inorganic energy sources for chemolithotrophic and mixotrophic bacteria.Geomicrobiol. J.,1, 65–83.

    Article  CAS  Google Scholar 

  • Ehrlich, H.L. 1990.Geomicrobiology, 2nd edn. Marcel Dekker Inc, New York.

    Google Scholar 

  • Enterline, P.E. and Marsh, C.M. 1980. Mortality studies of smelter workers.Am. J. Ind. Med.,1, 251–259.

    Article  CAS  Google Scholar 

  • Fan, A.M. 1990. The carcinogenic potential of cadmium, arsenic and selenium and the associated public health and regulatory implications.J. Toxicol. Sci.,15, suppl. 4, 162–175.

    Article  CAS  Google Scholar 

  • Farmer, J.G. and Johnson, L.R. 1990. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic.British Journal of Industrial Medicine,47, 342–348.

    CAS  Google Scholar 

  • Farmer, J.G., Johnson, L.R. and Lovell, M.A. 1989. Urinary arsenic speciation and the assessment of UK dietary, environmental and occupational exposures to arsenic.Env. Geochem. Health,11, 93.

    Article  CAS  Google Scholar 

  • Ferguson, C. and Marsh, J. 1993. Assessing human health risks from ingestion of contaminated soil.Land Contamination and Reclamation,1, 177–185.

    Google Scholar 

  • Ferguson, J.E. 1990.The Heavy Elements: Chemistry, Environmental Impact and Health Effects, pp.70–71. Pergamon Press.

  • Ferguson, J.F. and Gavis, J. 1972. A review of the arsenic cycle in natural waters.Water. Res.,6, 1259–1274.

    Article  CAS  Google Scholar 

  • Fischer, A.B., Buchet, J.P. and Lauwerys, R.R. 1989. Celular metabolism of arsenic studies in mammalian cellsin vitro.Env. Geochem. Health,11, 87–92.

    Article  CAS  Google Scholar 

  • Fleming, G.A. 1965. Trace elements in plants with particular reference to pasture species.Outlook on Agriculture,4, 270–285.

    Article  CAS  Google Scholar 

  • Fowle, J.R. 1992 Health effects of arsenic in drinking water: research needs.Env. Geochem. Health,14, 63–68.

    Article  CAS  Google Scholar 

  • Franzblau, A. and Lilis, R. 1989. Acute arsenic intoxication from environmental arsenic exposure.Arch. Environ. Health,44, 385–390.

    Article  CAS  Google Scholar 

  • Freedman, B. and Hutchinson, T.C. 1981. Sources of metal and elemental contamination of terrestrial environments. In: Lepp, N.W. (ed.),Effect of Heavy Metal Pollution on Plants. 2. Metals in the Environment, pp.35–94. Applied Science Publishers.

  • Frost, D.V. 1980. The two faces of arsenic — can arsenophobia be cured?3rd Spurenelement Symp., Karl-Marx-University, Leipzig and Friedrich-Schiller-University, Jena, pp.17–23.

    Google Scholar 

  • Gardner, M.J., Winter, P.D., Taylor, C.P. and Acheson, E.D. 1983.Atlas of Cancer Mortality in England and Wales 1968–1978. Wiley, Chichester.

    Google Scholar 

  • Goldman, M. and Dacre, J.C. 1989. Lewisite: its chemistry, toxicology and biological effects.Rev. Environ. Contam. Toxicol.,110, 75–115.

    Article  CAS  Google Scholar 

  • Goldman, M. and Dacre, J.C. 1991. Inorganic arsenic compounds: are they carcinogenic, mutagenic, teratogenic?Environ. Geochem. Health,13, 179–191.

    Article  CAS  Google Scholar 

  • Harper, M. and Haswell, S.J. 1988. A comparison of copper, lead and arsenic extraction from polluted and unpolluted soils.Env. Tech. Letts.,9, 1271–1280.

    Article  CAS  Google Scholar 

  • Harper, M. and Miranda, G.P. 1990. Management of health risks in the arsenic production industry: modern production in Chile in the context of past experience in Britain.Ann. Occup. Hyg.,34, 471–482.

    Article  CAS  Google Scholar 

  • Haswell, S.J., O'Neill, P. and Bancroft, K.C.C. 1985. Arsenic speciation in soil-pore waters from mineralized and unmineralized areas of south-west England.Talanta,32, 69–72.

    Article  CAS  Google Scholar 

  • Health and Safety Executive. 1990.Arsenic: health and safety precautions. Environmental Hygiene Series, EH 8 (Rev). HMSO, London.

    Google Scholar 

  • Hendrie, M.S., Holding, A.J. and Shewan, J.M. 1974. Emended description of the genusAlcaligenes and ofAlcaligenes faecalis and a proposal that the generic name of Achromobacter be rejected: status of the named species ofAlcaligenes andAchromobacter.Int. J. Syst. Bacteriol.,24, 534–550.

    Article  Google Scholar 

  • Healy, W.B. 1968. Ingestion of soil by dairy cows.New Zealand J. Agric. Res.,11, 487–499.

    Article  Google Scholar 

  • Hindmarsh, J.T. and McCurdy, R.F. 1986. Clinical and environmental aspects of arsenic toxicity.CRC Crit. Rev. Lab. Sci.,23, 315–347.

    Article  CAS  Google Scholar 

  • Hiroki, M. and Yoshiwara, Y. 1993. Arsenic fungi isolated from arsenic-polluted soils.Soil Science and Plant Nutrition,39, 237–243.

    Article  CAS  Google Scholar 

  • Hodges, M. 1992. Carrick District Council,personal communication

  • Hoffmann, J.E. 1993. Remediating copper smelter dusts: the arsenic problem.Journal of Metals, 30–31.

    Article  Google Scholar 

  • Holland, R.H., McCall, M.S. and Lanz, H.C. 1959. A study of inhaled arsenic 74 in man.Cancer Res.,19, 1154–1156.

    Google Scholar 

  • Hopenhayn-Rich, C., Smith, A.H. and Goeden, H.M. 1993. Human studies do not support the methylation threshold hypothesis for the toxicity of inorganic arsenic.Environmental Research,60, 161–177.

    Article  CAS  Google Scholar 

  • Hopkin, W. 1989. The problem of arsenic disposal in non-ferrous metals production.Env. Geochem. Health,11, 101–112.

    Article  CAS  Google Scholar 

  • Howe, G.M. 1970.National Atlas of Disease Mortality in the UK. Nelson, London.

    Google Scholar 

  • Hughes, J.P., Polissar, L. and van Belle, G. 1988. Evaluation and synthesis of health effects studies of communities surrounding arsenic producing industries.Int. J. Epidemiology,17, 407–413.

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer). 1987. Arsenic and arsenic compounds (Group 1). In:IARC Monograph on the Evaluation of the Carcinogenic Risks to Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs, vols 1 to 42. Supplement 7, pp. 100–106. IARC, Lyon, France.

    Google Scholar 

  • Ilyaletdinov, A.N. and Abdrashitova, S.A. 1981. Autotrophic oxidation of arsenic by a culture ofPseudomonas arsenitoxidans.Mikrobiologiya,50, 197–204.

    CAS  Google Scholar 

  • Jacobson-Kram, D., Mushak, P., Piscator, M., Sivulka, D.J., Chu, M., Gibb, H.J., Thorslund, T.W. and Crump, K.S. 1984.Health Assessment Document for Inorganic Arsenic. EPA-600/8-83-021F. United States Environmental Protection Agency.

  • Johnson, D.L. 1972. Bacterial reduction of arsenite in seawater.Nature (London),240, 44–45.

    Article  CAS  Google Scholar 

  • Johnson, L.R. and Farmer, J.G. 1989. Urinary arsenic concentrations and speciation in Cornwall residents.Env. Geochem. Health,11, 39–44.

    Article  CAS  Google Scholar 

  • Kellard, B. 1993.Hazardous substances: Carcinogens Guide, p.69. Croner Publications Ltd.

  • Kloke, A., Sauerbeck, D.R. and Vetter, H. 1984. The contamination of plants and soils with heavy metals and transport of metals in terrestrial food chains. In: Nriagu, J.O. (ed.),Changing Metal Cycles and Human Health, pp.113–141. Springer-Verlag.

  • Lakenen, E. 1962. On the analysis of soluble trace elements.Ann. Ag. Fenn.,2, 109–117.

    Google Scholar 

  • Landrigan, P.J. 1981. Arsenic — state of the art.Am. J. Ind. Med.,2, 5–14.

    Article  CAS  Google Scholar 

  • Larramendy, M.L., Popescu, N.C. and DiPaolo, J.A. 1981. Induction by organic metal salts of sister chromatid exchanges and chromosome aberrations in human and Syrian hamster cell strains.Environ. Mutagen.,3, 597–606.

    Article  CAS  Google Scholar 

  • Lee, T.C., Tanaka, N., Lamb, P.W., Gilmer, T.M. and Barrett, J.C. 1988. Induction of gene amplification by arsenic.Science,241, 79.

    Article  CAS  Google Scholar 

  • Legault, A.S., Volchek, K., Tremblay, A.Y. and Whittaker, H. 1993. Removal of arsenic from groundwater using reagent binding/membrane separation.Environmental Progress,12, 157–159.

    Article  CAS  Google Scholar 

  • Li, X. and Thornton, I. 1993. Arsenic, antimony and bismuth in soil and pasture herbage in some old metalliferous mining areas in England.Env. Geochem. and Health,15, 135–144.

    Article  CAS  Google Scholar 

  • Lindsay, D.G. 1979. Toxic elements in food. In:Reclamation of Contaminated Land: Proc. Soc. Chem. Ind. Conf. C9, pp.1–7. Eastbourne, UK.

  • Logan, T.J. and Traina, S.J. 1993. Trace metals in agricultural soils. In: Allen, H.E., Perdue, E.M. and Brown, D.S. (ed.),Metals in Groundwater, pp.309–347, Lewis Publishers.

  • Lunde, G. 1973. Synthesis of fat and water soluble arsenoorganic compounds in marine and limnetic algae.Acta. Chem. Scand.,27, 1586–1594.

    Article  CAS  Google Scholar 

  • Luten, J.B., Riekwell-Booy, G. and Rauchbaar, A. 1982. Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organoarsenic compound present and its excretion by man.Environmental Health Perspectives,45, 165–170.

    Article  CAS  Google Scholar 

  • McBride, B.C. and Wolfe, R.S. 1971. Biosynthesis of dimethylarsine byMethanobacterium.Biochemistry,10, 4312–4317.

    Article  CAS  Google Scholar 

  • McBride, B.C., Merilees, H., Cullen, W.R. and Pickett, W. 1978. Anaerobic and aerobic alkylation of arsenic. In: Brickman, F.E. and Bellama, J.M. (eds.),Organometals and Organometalloids Occurrence and Fate in the Environment, pp.94–115, American Chemical Society.

  • McKinney, J.D. 1992. Metabolism and disposition of inorganic arsenic in laboratory animals and humans.Env. Geochem. Health,14, 43–48.

    Article  CAS  Google Scholar 

  • Machlis, L. 1941. Accumulation of arsenic in the shoots of sudan grass and bush beans.Plant Physiol.,16, 521–544.

    Article  CAS  Google Scholar 

  • MAFF. 1982.Survey of Arsenic in Food. The eighth report of the Steering Group on Food Surveillance. The Working Party on the Monitoring of Foodstuffs for Heavy Metals. Food Surveillance Paper No 8. HMSO, London.

    Google Scholar 

  • Mappes, R. 1977. Experiments on excretion of arsenic in urine.Int. Arch. Occup. Environ. Health,40, 267–272.

    Article  CAS  Google Scholar 

  • Mass, M.J. 1992. Human carcinogenesis by arsenic.Env. Geochem. Health,14, 49–54.

    Article  CAS  Google Scholar 

  • Meharg, A.A. and Macnair, M.R. 1990. An altered phosphate uptake system in arsenate tolerantHolcus lanatus L.New Phytol.,116, 29–35.

    Article  CAS  Google Scholar 

  • Meharg, A.A. and Macnair, M.R. 1991. Uptake, accumulation and translocation of arsenate in arsenate-tolerant and non-tolerantHolcus lanatus L.New Phytol.,117, 225–231.

    Article  CAS  Google Scholar 

  • Misra, S.G. and Tiwari, R.C. 1963. Studies on arsenite —arsenate adsorption on soils.Ind. J. Appl. Chem.,26, 117–121.

    CAS  Google Scholar 

  • Mitchell, P.B., Waller, C.P. and Atkinson, K. 1994. Prediction of water contamination arising from disposal of solid wastes.Proc. Hydrometallurgy '94, pp.1011–1024. SCI/IMM, Cambridge, UK.

    Google Scholar 

  • Mitchell, R.L. 1964. Trace elements in soils. In: Bear, F. (ed.),Chemistry of the Soil, pp.320–368. Reinhold Publ. Corp., New York.

    Google Scholar 

  • Mobley, H.T. and Rosen, B.P. 1982 Energetics of plasmid-mediated arsenate resistance inEscherichia coli.Proc. Natl. Acad. Sci. USA,79, 6119–6122.

    Article  CAS  Google Scholar 

  • Murphy, B.L., Toole, A.P. and Bergstrom, P.D. 1989. Health risk assessment for arsenic contaminated soil.Env. Geochem. Health,11, 163–170.

    Article  CAS  Google Scholar 

  • Nakamuro, K. and Sayato, Y. 1981. Comparative studies of chromosomal aberration induced by trivalent and pentavalent arsenic.Mutat. Res.,88, 73–80.

    Article  CAS  Google Scholar 

  • National Primary Drinking Water Regulations. 1991. Subpart B. Maximum contaminant levels. 40 Code of Federal Regulations (CFR) 141.11.

  • North, D.W. 1992. Risk assessment for ingested inorganic arsenic: a review and status report.Env. Geochem. Health,14, 59–62.

    Article  CAS  Google Scholar 

  • Olson, O.E., Sisson, L.L. and Moxon, A.L. 1940. Absorption of selenium and arsenic by plants from soils under natural conditions.Soil Sci.,50, 115–118.

    Article  CAS  Google Scholar 

  • O'Neill. 1990. Arsenic. In: Alloway, B. J. (ed.),Heavy Metals in Soils, pp.83–99. Blackie.

  • Onishi, H. 1969. In: Wedepohl, K.H. (ed.),Handbook of Geochemistry. Springer-Verlag, New York.

    Google Scholar 

  • Osborne, F.H. and Ehrlich, H.L. 1976. Oxidation of arsenite by a soil isolate ofAlcaligenes.J. App. Bacteriol.,41, 295–305.

    Article  CAS  Google Scholar 

  • Oscarson, D.W., Huang, P.M., Defosse, C. and Herbillon, A. 1981. Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial environments.Nature,291, 50–51.

    Article  CAS  Google Scholar 

  • Partington, J.R. 1947.Inorganic Chemistry, p. 627. Macmillan, London.

    Google Scholar 

  • Pershagen, G., Lind, B. and Bjorklund, N.E. 1982. Lung retention and toxicity of some inorganic arsenic compounds.Envir. Res.,29, 425–434.

    Article  CAS  Google Scholar 

  • Peterson, P.J., Benson, L.M. and Zieve, R. 1981. Metalloids. In: Lepp, N.W. (ed.),Effect of heavy metal pollution on plants. 1. Effect of trace metals on plant function. Applied Science Publishers.

  • Phillip, R., Hughes, A.O., Robertson, M.C. and Mitchell, T.F. 1983. Malignant melanoma incidence and association with arsenic.British Medico-Chirugical Journal,98, 165–169.

    Google Scholar 

  • Phillips, S.E. and Taylor, M.L. 1976. Oxidation of arsenite to arsenate byAlcaligenes faecalis.App. Env. Microbiol.,32, 392–399.

    CAS  Google Scholar 

  • Pickett, A.W., McBride, B.C., Cullen, W.R. and Manji, H. 1981. The reduction of trimethylarsine oxide byCandida humicola.Can. J. Microbiol.,27, 773–778.

    Article  CAS  Google Scholar 

  • Piscator, M. 1986. The dependence of toxic reactions on the chemical species of elements. In: Bernhard, M., Brinckman, F.E. and Sadler, P.J. (eds),The Importance of Chemical ‘Speciation’ in Environmental Processes. Springer-Verlag.

  • Piver, W.T. 1983. Mobilisation of arsenic by natural and industrial processes. In: Fowler, B.A. ed.,Biological and environmental effects of arsenic. Elsevier Science Publishers, B.V.

    Google Scholar 

  • Porter, E.K. and Peterson, P.J. 1975. Arsenic accumulation by plants on mine waste (United Kingdom).Sci. Total Env.,4, 365–371.

    Article  CAS  Google Scholar 

  • Porter, E.K. and Peterson, P.J. 1977. Arsenic tolerance in grasses growing on mine waste.Env. Poll.,14, 255–265.

    Article  CAS  Google Scholar 

  • Porter, E.K. and Peterson, P.J. 1977a. Biogeochemistry of arsenic on polluted sites in SW England.Trace Substances in Environmental Health, XI, 89–99.

  • Rubenstein, R. and Segal, S.A. 1993. Risk assessment of metals in groundwater. In: Allen, H.E., Perdue, E.M. and Brown, D.S. (ed.),Metals in Groundwater, pp.209–308. Lewis Publishers.

  • Schnitzer, M. 1978. Humic substances: chemistry and reactions. In: Schnitzer, M. and Khan, S.U. (eds.),Soil organic matter. Elsevier, New York.

    Google Scholar 

  • Schrauzer, G.N., White, D.A. and Schneider, C.J. 1976. Inhibition of the genesis of spontaneous mammary tumors in C3H mice: effects of selenium and of selenium antagonistic elements and their possible role in human breast cancer.Bioinorganic Chem.,6, 265–270.

    Article  CAS  Google Scholar 

  • Schroeder, H.A. and Balassa, J.J. 1966. Abnormal trace metals in man: arsenic.J. Chron. Dis.,19, 85–106.

    Article  CAS  Google Scholar 

  • Silver, S. and Keach, D. 1982. Energy-dependent arsenate flux: the mechanism of plasmid-mediated resistance.Proc. Natl. Acad. Sci. USA.,79, 6114–6118.

    Article  CAS  Google Scholar 

  • Silver, S. and Nakahara, H. 1983. Bacterial resistance to arsenic compounds. In: Lederer, W.H. and Fensterheim, R.J. (eds.),Arsenic. Industrial, Biomedical, Environmental Perspectives, pp. 190–199. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Smith, A.H., Hopenhayn-Rich, C., Bates, M.N., Goeden, H.M., Hertz-Picciotto, I., Duggan, H.M., Wood, R., Kosnett, M.J. and Smith, M.T. 1992. Cancer risks from arsenic in drinking water.Environmental Health Perspectives,97, 259–267.

    Article  CAS  Google Scholar 

  • Staines, S.J. 1979.Soil in Cornwall II. Sheet SW (53) (Hayle). Soil Survey Record, No. 57.

  • Stara, J.F., Kello, D. and Durkin, P. 1980. Human health hazards associated with chemical contamination of aquatic environment.Env. Health Perspect.,19, 89–93.

    Google Scholar 

  • Suttle, N.F., Alloway, B.J. and Thornton, I. 1975. An effect of soil ingestion on the utilization of dietary copper by sheep.J. Agric. Sci., Camb.,84, 249–254.

    Article  Google Scholar 

  • Tamaki, S. and Frankenberger, W.T. 1992. Environmental biochemistry of arsenic.Reviews of Environmental Contamination and Toxicology,124, 79–110.

    CAS  Google Scholar 

  • Thompson, R.J. 1976. The collection and measurement of airborne arsenic.Air Poll. Meas. Tech., Part II, pp. 126–131. World Health Organisation Publ.

  • Thoresby, P. and Thornton, I. 1979. Heavy metals and arsenic in soil, pasture herbage and barley in some mineralised areas in Britain: significance to animal and human health. In: Hemphill, D.D. (ed.),Trace Substances in Environmental Health, XIII, p. 13. University of Missouri, Columbia.

    Google Scholar 

  • Thornton, I. 1974. Biogeochemical and soil ingestion studies in relation to the trace element nutrition of livestock. In: Hoekstra, W.G., Suttie, J.W., Ganther, H.E. and Mertz, W. (eds),Trace Element Metabolism in Animals — 2, pp.451–454. University Park Press, Baltimore.

    Google Scholar 

  • Thornton, I. 1979. Background levels of heavy metals in soils and plants. In:Reclamation of Contaminated Land. Proc. Soc. Chem. Ind. Conf., C5, pp. 1–11. Eastbourne, UK. Thornton, I. 1979a. Geochemical aspects of heavy metal pollution and agriculture in England and Wales. In:Inorganic pollution and agriculture, pp. 105–125. Ministry of Agriculture, Fisheries and Food, Ref. Book 326.

  • Thornton, I. and Abrahams, P. 1983. Soil ingestion — a major pathway of heavy metals into livestock grazing contaminated land.Sci. Tot. Env.,28, 287–294.

    Article  CAS  Google Scholar 

  • Thornton, I., Abrahams, P.W., Culbard, E., Rother, J.A.P. and Olson, B.H. 1986. The interaction between geochemical and pollutant metal sources in the environment: implications for the community. In: Thornton, I. and Howarth, R. (eds.),Applied Geochemistry in the 1980s, pp.217–308. Halsted Press.

  • Thornton, I., Abrahams, P. and Matthews, H. 1979. Some examples of the environmental significance of heavy metal anomalies disclosed by the Wolfson Geochemical Atlas of England and Wales. In:Management and Control of Heavy Metals in the Environment, pp.218–221. CEP Consultants, Edinburgh.

    Google Scholar 

  • Thornton, I. and Webb, J.S. 1975. Trace elements in soils and surface waters contaminated by past metalliferous mining in parts of England. In: Hemphill, D.D. (ed.),Trace Substances in Environmental Health, IX, pp.77–88. University of Missouri, Columbia.

    Google Scholar 

  • Tye, C.T., Haswell, S.J., O'Neill, P. and Bancroft, K.C.C. 1985. High-performance liquid chromatography with hydride generation/atomic absorption spectrometry for the determination of arsenic species with application to some water samples.Anal. Chim. Acta.,169, 195–200.

    Article  CAS  Google Scholar 

  • US EPA. (US Environmental Protection Agency). 1983.Health assessment document for inorganic arsenic. EPA-600/8–83–021F. Office of Health and Environmental Assessment. Washington, DC.

    Google Scholar 

  • US EPA. (US Environmental Protection Agency). 1988a.Risk assessment forum, special report on ingested arsenic: skin cancer; nutritional essentiality. EPA/625/3-87/013. EPA Washington, D.C., July 1988.

  • US EPA. (US Environmental Protection Agency). 1988b.Science Advisory Board's review of the issues relating to arsenic contained in the phase II proposed regulations for the Office of Drinking Water. Science Advisory Board Committee: Drinking Water Subcommittee of the Environmental Health Committee. Uthus, E.O. 1992. Evidence for arsenic essentiality. Env. Geochem. Health, 14, 55–58.

  • Vahter, M. 1983. Metabolism of arsenic. In: Fowler, B.A. (ed.),Biological and Environmental Effects of Arsenic. Elsevier Science Publishers, B.V.

    Chapter  Google Scholar 

  • Valentine, J.L., He, S.Y., Reisbord, L.S. and Lachenbruch, P.A. 1992. Health response by questionnaire in arsenic-exposed populations.J. Clinical Epidemiology,45, 487–494.

    Article  CAS  Google Scholar 

  • Vallee, B.L., Ulmer, D.D. and Wacker, W.E.C. 1960. Arsenic toxicology and biochemistry.A.M.A. Arch. Ind. Health,21, 56–75.

    Google Scholar 

  • Verkleij, J.A.C. and Schat, H. 1990. Mechanisms of metal tolerance in higher plants. In: Shaw, A.J. (ed.),Heavy metal tolerance in plants: Evolutionary aspects. CRC Press.

  • Wakao, N., Koyatsu, H., Komai, Y., Shimokawara, H., Sakurai, Y. and Siota, H. 1988. Microbial oxidation of arsenite and occurrence of arsenite-oxidising bacteria in acid mine water from a sulfur-pyrite mine.Geomicrobiology Journal,6, 11–24.

    Article  CAS  Google Scholar 

  • Wan, B., Christian, R.T. and Soukup, S.W. 1982. Studies of cytogenetic effects of arsenicals on mammalial cellsin vitro.Environ. Mutagen.,4, 493–498.

    Article  CAS  Google Scholar 

  • Wauchope, R.D. 1981. Uptake, translocation and phytotoxicity of arsenic in plants. In: Lederer, W.H. and Fensterheim, R.J. (eds.),Arsenic: Industrial, Biomedical, Environmental Perspectives, pp.348–375. Van Nostrand, Reinhold Co., New York.

    Google Scholar 

  • Webb, J.S., Thornton, L, Howart, R.J., Thompson, gnM and Lowenstein, P.L. 1978.The Wolfson Geochemica Atlas of England and Wales. Oxford University Press

  • Welch, A.H., Lico, M.S. and Hughes, J.L. 1988. Arsenic in ground water of the Western United States.Ground Water,26, 333–347.

    Article  CAS  Google Scholar 

  • WHO. 1972.Health hazards of the human environment. World Health Organisation, Geneva.

    Google Scholar 

  • WHO. 1981.Environmental Health Criteria: Arsenic. World Health Organisation, Geneva.

    Google Scholar 

  • WHO. 1983.27thReport of the Joint FAO/WHO Expert Committee on Food Additives, p.29. Technical Report series 696. World Health Organisation, Geneva.

    Google Scholar 

  • Wilbourne, J., Haroun, L., Heseltine, E., Kaldor, J., Partensky, C. and Vainio, V. 1986. Response of experimental animals to human carcinogens: an analysis based upon the IARC Monographs programme.Carcinogenesis,7, 1853–1863.

    Article  Google Scholar 

  • Wilson, F.H. and Hawkins, D.B. 1978. Arsenic in streams, stream sediments and ground water, Fairbanks Area, Alaska.Environmental Geology,2, 195–202.

    Article  CAS  Google Scholar 

  • Winship, K.A. 1984. Toxicity of inorganic arsenic salts.Adv. Drug. React. Act. Poison Rev.,3, 129–160.

    CAS  Google Scholar 

  • Woolson, E.A. 1983. Emissions, cycling and effects of arsenic in soil ecosystems. In: Fowler, B.A. (ed.),Biological and environmental effects of arsenic. Elsevier Science Publishers, B.V.

    Chapter  Google Scholar 

  • Woolson, E.A. and Kearney, P.C. 1973. Persistence and reactions of14C-cacodilic acid in soils.Env. Sci. Tech.,7,47–50.

    Article  CAS  Google Scholar 

  • Xu, J. and Thornton, I. 1985. Arsenic in garden soils and vegetable crops in Cornwall, England: implications for human health.Env. Geochem. Health,7, 131–133

    Article  CAS  Google Scholar 

  • Zielhuis, R.L. and Wibowo, A.A.E. 1984. Standard setting and metal speciation: arsenic. In: Nriagu, J.O. (ed.),Changing metal cycles and human health, pp.113–141. Springer-Verlag.

  • Zingaro, R.A. 1993. Arsenic — a classic example of chemophobia.Environment International,19, 167–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, P., Barre, D. The nature and significance of public exposure to arsenic: a review of its relevance to South West England. Environ Geochem Health 17, 57–82 (1995). https://doi.org/10.1007/BF00146709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00146709

Keywords

Navigation