Skip to main content

Monosomy 1p36 As a Model for the Molecular Basis of Terminal Deletions

  • Chapter
Genomic Disorders

Abstract

Deletion of the most distal, telomeric band of human chromosomes can result in a variety of mental retardation and multiple congenital anomaly syndromes. These terminal deletions are some of the most commonly observed structural chromosome abnormalities detected by routine cytogenetic analysis. Terminal deletions of 1p36 occur in approx 1 in 5000 live births, making it the most frequently observed terminal deletion and one of the most commonly observed mental retardation syndromes in humans. Molecular characterization of subjects with monosomy 1p36 indicates that, like other terminal deletions, 1p36 deletions have breakpoints occurring in multiple locations over several megabases and are comprised of terminal truncations, interstitial deletions, complex rearrangements, and derivative chromosomes. In addition, cryptic interrupted inverted duplications have been observed at the end of terminally deleted chromosomes, suggesting premeiotic breakage-fusion-bridge (BFB) cycles can be intermediate steps in the process of generating and stabilizing terminal deletions of 1p36. Overall, these observations are identical to those made in yeast and other model systems in which a double-strand break (DSB) near a telomere can be repaired by a variety of mechanisms to stabilize the end of a broken chromosome. Furthermore, sequence analysis and fluorescent in situ hybridization (FISH) mapping of the terminal 10.5 Mb of 1p36 including a variety of terminal deletion breakpoint junctions indicate that segmental duplications, low-copy repeats (LCRs), and short repetitive DNA sequence elements may mediate the generation and stabilization of terminal deletions of 1p36. We hypothesize that nonallelic homologous recombination (NAHR) between palindromic or inverted LCRs in the subtelomeric region of 1p36 could generate a dicentric chromosome that is broken at a random location during the subsequent anaphase as the centromeres move to opposite poles. This model suggests that the molecular basis of terminal deletions may be directly linked to genomic architectural features in the subtelomeric regions that generate the initial, variable-sized terminally deleted chromo-some, and that stabilization of the broken chromosome occurs by one of a variety of competing DSB repair pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Muller HJ. The remaking of chromosomes. Collecting Net 1938;13:181–195.

    Google Scholar 

  2. McClintock B. The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad SciUSA 1939;25:405–416.

    Article  CAS  Google Scholar 

  3. McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics 1941;26:234–282.

    PubMed  CAS  Google Scholar 

  4. Cervantes RB, Lundblad V. Mechanisms of chromosome-end protection. Curr Opin Cell Biol 2002;14:351–356.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper JP. Telomere transitions in yeast: the end of the chromosome as we know it. Curr Opin Genet Dev 2000;10:169–177.

    Article  PubMed  CAS  Google Scholar 

  6. Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988;85:6622–6626.

    Article  PubMed  CAS  Google Scholar 

  7. Brown WR, MacKinnon PJ, Villasante A, Spurr N, Buckle VJ, Dobson MJ. Structure and polymorphism of human telomere-associated DNA. Cell 1990;63:119–132.

    Article  PubMed  CAS  Google Scholar 

  8. Cross SH, Allshire RC, McKay SJ, McGill NI, Cooke HJ. Cloning of human telomeres by complementation in yeast. Nature 1989;338:771–774.

    Article  PubMed  CAS  Google Scholar 

  9. Flint J, Bates GP, Clark K, et al. Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum Mol Genet 1997;6:1305–1313.

    Article  PubMed  CAS  Google Scholar 

  10. Riethman H, Ambrosini A, Castaneda C, et al. Mapping and initial analysis of human subtelomeric sequence assemblies. Genome Res 2004;14:18–28.

    Article  PubMed  CAS  Google Scholar 

  11. Saccone S, De Sario A, Della Valle G, Bernardi G. The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. Proc Natl Acad Sci USA 1992;89:4913–4917.

    Article  PubMed  CAS  Google Scholar 

  12. Saccone S, De Sario A, Wiegant J, Raap AK, Della Valle G, Bernardi G. Correlations between isochores and chromosomal bands in the human genome. Proc Natl Acad Sci USA 1993;90:11,929–11,933.

    Article  PubMed  CAS  Google Scholar 

  13. National Institutes of Health and Institute of Molecular Medicine collaboration. A complete set of human telomeric probes and their clinical application. Nat Genet 1996;14:86–89.

    Article  Google Scholar 

  14. Borgaonkar DS. Chromosomal Variation in Man. A Catalog of Chromosomal Variants and Anomalies. 4th ed. New York, NY: Alan R. Liss, Inc.,1984.

    Google Scholar 

  15. Roeleveld N, Zielhuis GA, Gabreels F. The prevalence of mental retardation: a critical review of recent literature. Dev Med Child Neurol 1997;39:125–132.

    Article  PubMed  CAS  Google Scholar 

  16. Elwood JH, Darragh PM. Severe mental handicap in Northern Ireland. J Ment Defic Res 1981;25:147–155.

    PubMed  CAS  Google Scholar 

  17. Laxova R, Ridler MA, Bowen-Bravery M. An etiological survey of the severely retarded Hertfordshire children who were born between January 1, 1965 and December 31, 1967. Am J Med Genet 1977;1:75–86.

    Article  PubMed  CAS  Google Scholar 

  18. McDonald AD. Severely retarded children in Quebec: prevalence, causes, and care. Am J Ment Defic 1973;78:205–215.

    PubMed  CAS  Google Scholar 

  19. Flint J, Knight S. The use of telomere probes to investigate submicroscopic rearrangements associated with mental retardation. Curr Opin Genet Dev 2003;13:310–316.

    Article  PubMed  CAS  Google Scholar 

  20. Flint J, Wilkie AO, Buckle VJ, Winter RM, Holland AJ, McDermid HE. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nat Genet 1995;9:132–140.

    Article  PubMed  CAS  Google Scholar 

  21. Slavotinek A, Rosenberg M, Knight S, et al. Screening for submicroscopic chromosome rearrangements in children with idiopathic mental retardation using microsatellite markers for the chromosome telomeres. J Med Genet 1999;36:405–411.

    PubMed  CAS  Google Scholar 

  22. Wilkie AO. Detection of cryptic chromosomal abnormalities in unexplained mental retardation: a general strategy using hypervariable subtelomeric DNA polymorphisms. Am J Hum Genet 1993;53:688–701.

    PubMed  CAS  Google Scholar 

  23. Knight SJ, Horsley SW, Regan R, et al. Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet 1997;5:1–8.

    PubMed  CAS  Google Scholar 

  24. Knight SJ, Lese CM, Precht KS, et al. An optimized set of human telomere clones for studying telomere integrity and architecture. Am J Hum Genet 2000;67:320–332.

    Article  PubMed  CAS  Google Scholar 

  25. Veltman JA, Schoenmakers EF, Eussen BH, et al. High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. Am J Hum Genet 2002;70:1269–1276.

    Article  PubMed  CAS  Google Scholar 

  26. Yu W, Ballif BC, Kashork CD, et al. Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Hum Mol Genet 2003;12:2145–2152.

    Article  PubMed  CAS  Google Scholar 

  27. Heilstedt HA, Ballif BC, Howard LA, Kashork CD, Shaffer LG. Population data suggest that deletions of 1p36 are a relatively common chromosome abnormality. Clin Genet 2003;64:310–316.

    Article  PubMed  CAS  Google Scholar 

  28. Lejeune L, Lafourcade J, de Grouchy J, et al. Deletion partielle du bras court du chromosome 5. Individualisation d’un nouvel etat morbide. Sem Hop Paris 1963;18:1069–1079.

    Google Scholar 

  29. Hirschhorn K, Cooper HL, Firschein IL. Deletion of short arms of chromosomes 4-5 in a child with defects of midline fusion. Humangenetik 1965;1:479–482.

    PubMed  CAS  Google Scholar 

  30. Wolf U, Reinwein H, Porsch R, Schroter R, Baitsch H. Defizienz an den kurzen armen eines chromosomes n 4. Humangenetik 1965;1:397–413.

    Article  PubMed  CAS  Google Scholar 

  31. Stratton RF, Dobyns WB, Airhart SD, Ledbetter DH. New chromosomal syndrome: Miller-Dieker syndrome and monosomy 17p13. Hum Genet 1984;67:193–200.

    Article  PubMed  CAS  Google Scholar 

  32. Shapira SK, McCaskill C, Northrup H, et al. Chromosome 1p36 deletions: the clinical phenotype and molecular characterization of a common newly delineated syndrome. Am J Hum Genet 1997;61:642–650.

    PubMed  CAS  Google Scholar 

  33. Shaffer LG, Lupski JR. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 2000;34:297–329.

    Article  PubMed  CAS  Google Scholar 

  34. Heilstedt HA, Ballif BC, Howard LA, et al. Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the syndrome. Am J Hum Genet 2003;72:1200–1212.

    Article  PubMed  CAS  Google Scholar 

  35. Slavotinek A, Shaffer LG, Shapira SK. Monosomy 1p36. J Med Genet 1999;36:657–663.

    PubMed  CAS  Google Scholar 

  36. Wu YQ, Heilstedt HA, Bedell JA, et al. Molecular refinement of the 1p36 deletion syndrome reveals size diversity and a preponderance of maternally derived deletions. Hum Mol Genet 1999;8:313–321.

    Article  PubMed  CAS  Google Scholar 

  37. Ballif BC, Kashork CD, Shaffer LG. The promise and pitfalls of telomere region-specific probes. Am J Hum Genet 2000;67:1356–1359.

    PubMed  CAS  Google Scholar 

  38. Ballif BC, Yu W, Shaw CA, Kashork CD, Shaffer LG. Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions. Hum Mol Genet 2003;12:2153–2165.

    Article  PubMed  CAS  Google Scholar 

  39. Gisselsson D. Chromosome instability in cancer: how, when, and why? Adv Cancer Res 2003;87:1–29.

    PubMed  CAS  Google Scholar 

  40. Wilkie AO, Lamb J, Harris PC, Finney RD, Higgs DR. A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 1990;346:868–871.

    Article  PubMed  CAS  Google Scholar 

  41. Flint J, Craddock CF, Villegas A, et al. Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet 1994;55:505–512.

    PubMed  CAS  Google Scholar 

  42. Sprung CN, Reynolds GE, Jasin M, Murnane JP. Chromosome healing in mouse embryonic stem cells. Proc Natl Acad Sci USA 1999;96:6781–6786.

    Article  PubMed  CAS  Google Scholar 

  43. Varley H, Di S, Scherer SW, Royle NJ. Characterization of terminal deletions at 7q32 and 22q13.3 healed by De novo telomere addition. Am J Hum Genet 2000;67:610–622.

    Article  PubMed  CAS  Google Scholar 

  44. Neumann AA, Reddel RR. Telomere maintenance and cancer; look, no telomerase. Nat Rev Cancer 2002;2:879–884.

    Article  PubMed  CAS  Google Scholar 

  45. Varley H, Pickett HA, Foxon JL, Reddel RR, Royle NJ. Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells. Nat Genet 2002;30:301–305.

    Article  PubMed  Google Scholar 

  46. Bosco G, Haber JE. Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 1998;150:1037–1047.

    PubMed  CAS  Google Scholar 

  47. Meltzer PS, Guan XY, Trent JM. Telomere capture stabilizes chromosome breakage. Nat Genet 1993;4:252–255.

    Article  PubMed  CAS  Google Scholar 

  48. Ning Y, Liang JC, Nagarajan L, Schrock E, Ried T. Characterization of 5q deletions by subtelomeric probes and spectral karyotyping. Cancer Genet Cytogenet 1998;103:170–172.

    Article  PubMed  CAS  Google Scholar 

  49. Bottius E, Bakhsis N, Scherf A. Plasmodium falciparum telomerase: de novo telomere addition to telomeric and nontelomeric sequences and role in chromosome healing. Mol Cell Biol 1998;18:919–925.

    PubMed  CAS  Google Scholar 

  50. Friebe B, Kynast RG, Zhang P, Qi L, Dhar M, Gill BS. Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Res 2001;9:137–146.

    Article  PubMed  CAS  Google Scholar 

  51. Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability. Cell 2001;106:275–286.

    Article  PubMed  CAS  Google Scholar 

  52. Kramer KM, Haber JE. New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes Dev 1993;7:2345–2356.

    Article  PubMed  CAS  Google Scholar 

  53. Muller F, Wicky C, Spicher A, Tobler H. New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in Ascaris lumbricoides. Cell 1991;67:815–822.

    Article  PubMed  CAS  Google Scholar 

  54. Kolodner RD, Putnam CD, Myung K. Maintenance of genome stability in Saccharomyces cerevisiae. Science 2002;297:552–557.

    Article  PubMed  CAS  Google Scholar 

  55. Ballif BC, Gajecka M, Shaffer LG. Monosomy 1p36 breakpoints indicate repetitive DNA sequence elements may be involved in generating and/or stabilizing some terminal deletions. Chromosome Res 2004;12:133–141.

    Article  PubMed  CAS  Google Scholar 

  56. Ballif BC, Wakui K, Gajecka M, Shaffer LG. Translocation breakpoint mapping and sequence analysis in three monosomy 1p36 subjects with der(1)t(1;1)(p36;q44) suggest mechanisms for telomere capture in stabilizing de novo terminal rearrangements. Hum Genet 2004;114:198–206.

    Article  PubMed  CAS  Google Scholar 

  57. Gajecka M, Yu W, Ballif BC, et al. Delineation of mechanisms and regions of dosage imbalance in complex rearrangements of 1p36 leads to a putative gene for regulation of cranial suture closure. Eur J Hum Genet 2005;13:139–149.

    Article  PubMed  CAS  Google Scholar 

  58. Fouladi B, Sabatier L, Miller D, Pottier G, Murnane JP. The relationship between spontaneous telomere loss and chromosome instability in a human tumor cell line. Neoplasia 2000;2:540–554.

    Article  PubMed  CAS  Google Scholar 

  59. Lo AW, Sabatier L, Fouladi B, Pottier G, Ricoul M, Murnane JP. DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. Neoplasia 2002;4:531–538.

    Article  PubMed  CAS  Google Scholar 

  60. Horsley SW, Daniels RJ, Anguita E, et al. Monosomy for the most telomeric, gene-rich region of the short arm of human chromosome 16 causes minimal phenotypic effects. Eur J Hum Genet 2001;9:217–225.

    Article  PubMed  CAS  Google Scholar 

  61. Lamb J, Harris PC, Wilkie AO, Wood WG, Dauwerse JG, Higgs DR. De novo truncation of chromosome 16p and healing with (TTAGGG)n in the alpha-thalassemia/mental retardation syndrome (ATR-16). Am J Hum Genet 1993;52:668–676.

    PubMed  CAS  Google Scholar 

  62. Wong AC, Ning Y, Flint J, et al. Molecular characterization of a 130-kb terminal microdeletion at 22q in a child with mild mental retardation. Am J Hum Genet 1997;60:113–120.

    PubMed  CAS  Google Scholar 

  63. Allshire RC, Dempster M, Hastie ND. Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 1989;17:4611–4627.

    Article  PubMed  CAS  Google Scholar 

  64. Baird DM, Jeffreys AJ, Royle NJ. Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. Embo J 1995;14:5433–5443.

    PubMed  CAS  Google Scholar 

  65. Morin GB. Recognition of a chromosome truncation site associated with alpha-thalassaemia by human telomerase. Nature 1991;353:454–456.

    Article  PubMed  CAS  Google Scholar 

  66. Brkanac Z, Cody JD, Leach RJ, DuPont BR. Identification of cryptic rearrangements in patients with 18q-deletion syndrome. Am J Hum Genet 1998;62:1500–1506.

    Article  PubMed  CAS  Google Scholar 

  67. Marinescu RC, Johnson EI, Grady D, Chen XN, Overhauser J. FISH analysis of terminal deletions in patients diagnosed with cri-du-chat syndrome. Clin Genet 1999;56:282–288.

    Article  PubMed  CAS  Google Scholar 

  68. Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet 2002;18:74–82.

    Article  PubMed  CAS  Google Scholar 

  69. Ledbetter DH. Minireview: cryptic translocations and telomere integrity. Am J Hum Genet 1992;51:451–456.

    PubMed  CAS  Google Scholar 

  70. Mefford HC, Trask BJ. The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 2002;3:91–102.

    Article  PubMed  CAS  Google Scholar 

  71. Daniel A, Baker E, Chia N, et al. Recombinants of intrachromosomal transposition of subtelomeres in chromosomes 1 and 2: a cause of minute terminal chromosomal imbalances. Am J Med Genet A 2003;1 17:57–64.

    Article  Google Scholar 

  72. Malkova A, Ivanov EL, Haber JE. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci USA 1996;93:7131–7136.

    Article  PubMed  CAS  Google Scholar 

  73. Morrow DM, Connelly C, Hieter P. “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 1997;147:371–382.

    PubMed  CAS  Google Scholar 

  74. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000;406:641–645.

    Article  PubMed  CAS  Google Scholar 

  75. Difilippantonio MJ, Petersen S, Chen HT, et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 2002;196:469–480.

    Article  PubMed  CAS  Google Scholar 

  76. Myung K, Chen C, Kolodner RD. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 2001;411:1073–1076.

    Article  PubMed  CAS  Google Scholar 

  77. Myung K, Datta A, Kolodner RD. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 2001;104:397–408.

    Article  PubMed  CAS  Google Scholar 

  78. Myung K, Kolodner RD. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2002;99:4500–4507.

    Article  PubMed  CAS  Google Scholar 

  79. Pipiras E, Coquelle A, Bieth A, Debatisse M. Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. Embo J 1998;17:325–333.

    Article  PubMed  CAS  Google Scholar 

  80. Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 2002;12:1635–1644.

    Article  PubMed  CAS  Google Scholar 

  81. Ballif BC, Kashork CD, Shaffer LG. FISHing for mechanisms of cytogenetically defined terminal deletions using chromosome-specific subtelomeric probes. Eur J Hum Genet 2000;8:764–770.

    Article  PubMed  CAS  Google Scholar 

  82. Christ LA, Crowe CA, Micale MA, Conroy JM, Schwartz S. Chromosome breakage hotspots and delineation of the critical region for the 9p-deletion syndrome. Am J Hum Genet 1999;65:1387–1395.

    Article  PubMed  CAS  Google Scholar 

  83. Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab 1999;67:183–193.

    Article  PubMed  CAS  Google Scholar 

  84. Kolomietz E, Meyn MS, Pandita A, Squire JA. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 2002;35:97–112.

    Article  PubMed  CAS  Google Scholar 

  85. Flint J, Rochette J, Craddock CF, et al. Chromosomal stabilisation by a subtelomeric rearrangement involving two closely related Alu elements. Hum Mol Genet 1996;5:1163–1169.

    Article  PubMed  CAS  Google Scholar 

  86. Katz SG, Schneider SS, Bartuski A, et al. An 18q-syndrome breakpoint resides between the duplicated serpins SCCA1 and SCCA2 and arises via a cryptic rearrangement with satellite III DNA. Hum Mol Genet 1999;8:87–92.

    Article  PubMed  CAS  Google Scholar 

  87. Bois P, Jeffreys AJ. Minisatellite instability and germline mutation. Cell Mol Life Sci 1999;55:1636–1648.

    Article  PubMed  CAS  Google Scholar 

  88. Bzymek M, Lovett ST. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA 2001;98:8319–8325.

    Article  PubMed  CAS  Google Scholar 

  89. Edelmann L, Spiteri E, Koren K, et al. AT-rich palindromes mediate the constitutional t( 11;22) translocation. Am J Hum Genet 2001;68:1–13.

    Article  PubMed  CAS  Google Scholar 

  90. Kurahashi H, Shaikh T, Takata M, Toda T, Emanuel BS. The constitutional t(17;22): another translocation mediated by palindromic AT-rich repeats. Am J Hum Genet 2003;72:733–738.

    Article  PubMed  CAS  Google Scholar 

  91. Gajecka M, Ballif BC, Glotzbach CD, Bailey KA, Shaffer LG. Low-copy repeats and monosomy 1p36. The American Society of Human Genetics Annual Meeting. Toronto, ON, Canada, 2004.

    Google Scholar 

  92. Bonaglia MC, Giorda R, Poggi G, et al. Inverted duplications are recurrent rearrangements always associated with a distal deletion: description of a new case involving 2q. Eur J Hum Genet 2000;8:597–603.

    Article  PubMed  CAS  Google Scholar 

  93. Giglio S, Broman KW, Matsumoto N, et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 2001;68:874–883.

    Article  PubMed  CAS  Google Scholar 

  94. Jenderny J, Poetsch M, Hoeltzenbein M, Friedrich U, Jauch A. Detection of a concomitant distal deletion in an inverted duplication of chromosome 3. Is there an overall mechanism for the origin of such duplications/ deficiencies? Eur J Hum Genet 1998;6:439–444.

    Article  PubMed  CAS  Google Scholar 

  95. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 2001;11:1005–1017.

    Article  PubMed  CAS  Google Scholar 

  96. Eichler EE. Segmental duplications: what’s missing, misassigned, and misassembled—and should we care? Genome Res 2001;11:653–656.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ballif, B.C., Shaffer, L.G. (2006). Monosomy 1p36 As a Model for the Molecular Basis of Terminal Deletions. In: Lupski, J.R., Stankiewicz, P. (eds) Genomic Disorders. Humana Press. https://doi.org/10.1007/978-1-59745-039-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-039-3_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-559-0

  • Online ISBN: 978-1-59745-039-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics