Skip to main content

Studying Fertilization in Cell-Free Extracts

Focusing on Membrane/Lipid Raft Functions and Proteomics

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

Xenopus oocytes, eggs, and embryos serve as an ideal model system to study several aspects of animal development (e.g., gametogenesis, fertilization, embryogenesis, and organogenesis). In particular, the Xenopus system has been extensively employed not only as a “living cell” system but also as a “cell-free” or “reconstitutional” system. In this chapter, we describe a protocol for studying the molecular mechanism of egg fertilization with the use of cell-free extracts and membrane/lipid rafts prepared from unfertilized, metaphase II-arrested Xenopus eggs. By using this experimental system, we have reconstituted a series of signal transduction events associated with egg fertilization, such as sperm-egg membrane interaction, activation of Src tyrosine kinase and phospholipase Cγ, production of inositol trisphosphate, transient calcium release, and cell cycle transition. This type of reconstitutional system may allow us to perform focused proteomics (e.g., rafts) as well as global protein analysis (i.e., whole egg proteome) of fertilization in a cell-free manner. As one of these proteomics approaches, we provide a protocol for molecular identification of Xenopus egg raft proteins using mass spectrometry and database mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masui, Y. (2000) The elusive cytostatic factor in the animal egg. Nat. Rev. Mol. Cell. Biol. 1, 228–232.

    Article  CAS  PubMed  Google Scholar 

  2. Iwao, Y. (2000) Mechanisms of egg activation and polyspermy block in amphibians and comparative aspects with fertilization in other vertebrates. Zool. Sci. 17, 699–709.

    Article  CAS  Google Scholar 

  3. Yanagimachi, R. (1994) Fertilization, in The Physiology of Reproduction (Knobil, E. and Neill, J. D., eds.), Raven, New York, pp. 189–317.

    Google Scholar 

  4. Runft, L. L., Jaffe, L. A., and Mehlmann, L. M. (2002) Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237–254.

    Article  CAS  PubMed  Google Scholar 

  5. Sato, K., Iwasaki, T., Hirahara, S., Nishihira, Y., and Fukami, Y. (2004) Molecular dissection of egg fertilization signaling with the aid of tyrosine kinase-specific inhibitor and activator strategies. Biochim. Biophys. Ada 1697, 103–121.

    CAS  Google Scholar 

  6. Sato, K., Aoto, M., Mori, K., et al. (1996) Purification and characterization of a src-related p57 protein-tyrosine kinase from Xenopus oocytes. J. Biol. Chem. 271, 13,250–13,257.

    Article  CAS  PubMed  Google Scholar 

  7. Sato, K., Iwao, Y., Fujimura, T., et al. (1999) Evidence for the involvement of a Srcrelated tyrosine kinase in Xenopus egg activation. Dev. Biol. 209, 308–320.

    Article  CAS  PubMed  Google Scholar 

  8. Sato, K., Tokmakov, A. A., Iwasaki, T., and Fukami, Y. (2000) Tyrosine kinase-dependent activation of phospholipase Cy is required for calcium transient in Xenopus egg fertilization. Dev. Biol. 224, 453–469.

    Article  CAS  PubMed  Google Scholar 

  9. Sato, K., Ogawa, K., Iwasaki, T., Tokmakov, A. A., and Fukami, Y. (2001) Hydrogen peroxide induces Src family tyrosine kinase-dependent activation of Xenopus eggs. Dev. Growth Differ. 43, 55–72.

    Article  CAS  PubMed  Google Scholar 

  10. Sato, K., Iwasaki, T., Ogawa, K., Konishi, M., Tokmakov, A. A., and Fukami, Y. (2002) Low density detergent-insoluble membrane of Xenopus eggs: subcellular microdomain for tyrosine kinase signaling in fertilization. Development 129, 885–896.

    CAS  PubMed  Google Scholar 

  11. Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol. 36, 581–605.

    Article  CAS  PubMed  Google Scholar 

  12. Pappin, D. J. C, Hojrup, P., and Bleasby, A. J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3, 327–332

    Article  CAS  PubMed  Google Scholar 

  13. James, P., Quadroni, M., Carafoli, E., and Gonnet, G. (1994) Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci. 3, 1347–1350.

    Article  CAS  PubMed  Google Scholar 

  14. Eng, J. K., McCormack, A. L., and Yates, J. R., III (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989.

    Article  CAS  Google Scholar 

  15. Yates, J. R., III, Eng, J. K., and McCormack, A. L. (1995) Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal. Chem. 67, 3202–3210.

    Article  CAS  PubMed  Google Scholar 

  16. Neubauer, G., King, A., Rappsilber, J., et al. (1998) Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat. Genet. 20, 46–50.

    Article  CAS  PubMed  Google Scholar 

  17. Choudhary, J. S., Blackstock, W. P., Creasy, D. M., and Cottrell, J. S. (2001) Interrogating the human genome using uninterpreted mass spectrometry data. Proteomics 1, 651–667.

    Article  CAS  PubMed  Google Scholar 

  18. Tokmakov, A. A., Sato, K., Iwasaki, T., and Fukami, Y. (2002) Src kinase induces calcium release in Xenopus egg extracts via PLCγ and IP3-dependent mechanism. Cell Calcium 32, 11–20.

    Article  CAS  PubMed  Google Scholar 

  19. Sato, K., Tokmakov, A. A., He, C.-L., et al. (2003) Reconstitution of Src-dependent PLCγ phosphorylation and transient calcium release by using membrane rafts and cell-free extracts from Xenopus eggs. J. Biol. Chem. 278, 38,413–38,420.

    Article  CAS  PubMed  Google Scholar 

  20. Sakakibara, K., Sato, K., Yoshino, K., et al. (2005) Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. J. Biol. Chem. 280, 15,029–15,037.

    Article  CAS  PubMed  Google Scholar 

  21. Mahbub Hasan, A. K. M., Sato, K., Sakakibara, K., et al. (2005) Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev. Biol. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sato, Ki., Yoshino, Ki., Tokmakov, A.A., Iwasaki, T., Yonezawa, K., Fukami, Y. (2006). Studying Fertilization in Cell-Free Extracts. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics