Skip to main content

Introduction to Nucleocytoplasmic Transport

Molecules and Mechanisms

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

Nucleocytoplasmic transport, the exchange of matter between nucleus and cytoplasm, plays a fundamental role in human and other eukaryotic cells, affecting almost every aspect of health and disease. The only gate for the transport of small and large molecules as well as supramolecular complexes between nucleus and cytoplasm is the nuclear pore complex (NPC). The NPC is not a normal membrane transport protein (transporter). Composed of 500 to 1000 peptide chains, the NPC features a mysterious functional duality. For most molecules, it constitutes a molecular sieve with a blurred cutoff at approx 10 nm, but for molecules binding to phenylalanine-glycine (FG) motifs, the NPC appears to be a channel of approx 50 nm diameter, permitting bidirectional translocation at high speed. To achieve this, the NPC cooperates with soluble factors, the nuclear transport receptors, which shuttle between nuclear contents and cytoplasm. Here, we provide a short introduction to nucleocytoplasmic transport by describing first the structure and composition of the nuclear pore complex. Then, mechanisms of nucleocytoplasmic transport are discussed. Finally, the still essentially unresolved mechanisms by which nuclear transport receptors and transport complexes are translocated through the nuclear pore complex are considered, and a novel translocation model is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callan, H. G., Randall, J. T. and Tomlin, S. G. (1949) An electron microscope study of the nuclear membrane. Nature 163, 280.

    Article  CAS  PubMed  Google Scholar 

  2. Hutchison, C. J. (2002) Lamins: building blocks or regulators of gene expression? Nat. Rev. Mol. Cell Biol. 3, 848–858.

    Article  CAS  PubMed  Google Scholar 

  3. Kau, T. R., Way, J. C. and Silver, P. A. (2004) Nuclear transport and cancer: from mechanism to intervention. Nat. Rev. Cancer 4, 106–117.

    Article  CAS  PubMed  Google Scholar 

  4. Smith, J. M. and Koopman, P. A. (2004) The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends Genet. 20, 4–8.

    Article  CAS  PubMed  Google Scholar 

  5. Mounkes, L., Kozlov, S., Burke, B. and Stewart, C. L. (2003) The laminopathies: nuclear structure meets disease. Curr. Op. Genet. Dev. 13, 223–230.

    Article  CAS  PubMed  Google Scholar 

  6. Cronshaw, J. M. and Matunis, M. J. (2004) The nuclear pore complex: disease associations and functional correlations. Trends Endocrinol. Metabol. 15, 34–39.

    Article  CAS  Google Scholar 

  7. Gorlich, D. and Mattaj, I. W. (1996) Protein kinesis-Nucleocytoplasmic transport. Science 271, 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  8. Macara, I. G. (2001) Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594.

    Article  CAS  PubMed  Google Scholar 

  9. Weis, K. (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451.

    Article  CAS  PubMed  Google Scholar 

  10. Bednenko, J., Cingolani, G. and Gerace, L. (2003) Nucleocytoplasmic transport: navigating the channel. Traffic 4, 127–135.

    Article  CAS  PubMed  Google Scholar 

  11. Fahrenkrog, B. and Aebi, U. (2003) The nuclear pore complex: Nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766.

    CAS  PubMed  Google Scholar 

  12. Rout, M. P., Aitchison, J. D., Magnasco, M. O. and Chait, B. T. (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628.

    Article  CAS  PubMed  Google Scholar 

  13. Cullen, B. R. (2003) Nuclear RNA export. J. Cell Sci. 116, 587–597.

    Article  PubMed  Google Scholar 

  14. Fried, H. and Kutay, U. (2003) Nucleocytoplasmic transport: taking an inventory. Cell. Mol. Life Sci. 60, 1659–1688.

    Article  CAS  PubMed  Google Scholar 

  15. Suntharalingam, M. and Wente, S. R. (2003) Peering through the pore: Nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789.

    Article  CAS  PubMed  Google Scholar 

  16. Peters, R. (2003) Optical single transporter recording: Transport kinetics in microarrays of membrane patches. Annu. Rev. Biophys. Biomol. Struct. 32, 47–67.

    Article  CAS  PubMed  Google Scholar 

  17. Peters, R., Lang, I., Scholz, M., Schulz, B. and Kayne, F. (1986) Fluorescence Microphotolysis to Measure Nucleocytoplasmic Transport In vivo and In vitro. Biochem. Sot: Trans. 14, 821–822.

    CAS  Google Scholar 

  18. Nelson, W. G., Pienta, K. J., Barrack, E. R. and Coffey, D. S. (1986) The Role of the Nuclear Matrix in the Organization and Function of DNA. Ann. Rev. Biophys. Biophysic. Chem. 15, 457–475.

    Article  CAS  Google Scholar 

  19. Pederson, T. (2000) Half a century of “the nuclear matrix”. Mol. Biol. Cell 11, 799–805.

    CAS  PubMed  Google Scholar 

  20. Peters, R. (1986) Fluorescence Microphotolysis to Measure Nucleocytoplasmic Transport and Intracellular Mobility. Biochim. Biophys. Acta 864, 305–359.

    CAS  PubMed  Google Scholar 

  21. Luby-Phelps, K. (2000) Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity, diffusion, intracellular surface area. International Review of Cytology-A Survey of Cell Biology, Vol 192 192, 189–221.

    CAS  Google Scholar 

  22. Verkman, A. S. (2002) Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem. Sci. 27, 27–33.

    Article  CAS  PubMed  Google Scholar 

  23. Misteli, T. (2001) Nuclear structure-Protein dynamics: Implications for nuclear architecture and gene expression. Science 291, 843–847.

    Article  CAS  PubMed  Google Scholar 

  24. Kues, T., Peters, R. and Kubitscheck, U. (2001) Visualization and tracking of single protein molecules in the cell nucleus. Biophys. J. 80, 2954–2967.

    Article  CAS  PubMed  Google Scholar 

  25. Kues, T., Dickmanns, A., Luhrmann, R., Peters, R. and Kubitscheck, U. (2001) High intranuclear mobility and dynamic clustering of the splicing factor U1 snRNP observed by single particle tracking. Proc. Natl. Acad. Sci. USA 98, 12021–12026.

    Article  CAS  PubMed  Google Scholar 

  26. Singh, O. P., Bjorkroth, B., Masich, S., Wieslander, L. and Daneholt, B. (1999) The intranuclear movement of Balbiani ring premessenger ribonucleoprotein particles. Exp. Cell Res. 251, 135–146.

    Article  CAS  PubMed  Google Scholar 

  27. Politz, J. C. R., Tuft, R. A. and Pederson, T. (2003) Diffusion-based transport of nascent ribosomes in the nucleus. Mol. Biol. Cell 14, 4805–4812.

    Article  CAS  PubMed  Google Scholar 

  28. Lamb, M. M. and Daneholt, B. (1979) Characterization of Active Transcription Units in Balbiani Rings of Chironomus Tentans. Cell 17, 835–848.

    Article  CAS  PubMed  Google Scholar 

  29. Andersson, K., Bjorkroth, B. and Daneholt, B. (1980) The Insitu Structure of the Active 75-S Rna Genes in Balbiani Rings of Chironomus-Tentans. Exp. Cell Res. 130, 313–326.

    Article  CAS  PubMed  Google Scholar 

  30. Skoglund, U., Andersson, K., Strandberg, B. and Daneholt, B. (1986) 3-Dimensional Structure of A Specific Pre-Messenger Rnp Particle Established by Electron-Microscope Tomography. Nature 319, 560–564.

    Article  CAS  PubMed  Google Scholar 

  31. Mehlin, H., Daneholt, B. and Skoglund, U. (1992) Translocation of a Specific Premessenger Ribonucleoprotein Particle Through the Nuclear-Pore Studied with Electron-Microscope Tomography. Cell 69, 605–613.

    Article  CAS  PubMed  Google Scholar 

  32. Franke, W. W. and Scheer, U. (1974) Structures and functions of the nuclear envelope. Cell Nucleus 1, 219–347.

    CAS  Google Scholar 

  33. Doring, V. and Stick, R. (1990) Gene Structure of Nuclear Lamin-Liii of Xenopus-Laevis-A Model for the Evolution of If Proteins from A Lamin-Like Ancestor. EMBO J. 9, 4073–4081.

    CAS  PubMed  Google Scholar 

  34. Aebi, U., Cohn, J., Buhle, L. and Gerace, L. (1986) The Nuclear Lamina Is A Meshwork of Intermediate-Type Filaments. Nature 323, 560–564.

    Article  CAS  PubMed  Google Scholar 

  35. Smythe, C, Jenkins, H. E. and Hutchison, C. J. (2000) Incorporation of the nuclear pore basket protein Nup 153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J. 19, 3918–3931.

    Article  CAS  PubMed  Google Scholar 

  36. Senior, A. and Gerace, L. (1988) Integral Membrane-Proteins Specific to the Inner Nuclear-Membrane and Associated with the Nuclear Lamina. J. Cell Biol. 107, 2029–2036.

    Article  CAS  PubMed  Google Scholar 

  37. Jagatheesan, G., Thanumalayan, S., Muralikrishna, B., Rangaraj, N., Karande, A. A. and Parnaik, V. K. (1999) Colocalization of intranuclear lamin foci with RNA splicing factors. J. Cell Sci. 112, 4651–4661.

    CAS  PubMed  Google Scholar 

  38. Stick, R. and Hausen, P. (1985) Changes in the Nuclear Lamina Composition During Early Development of Xenopus-Laevis. Cell 41, 191–200.

    Article  CAS  PubMed  Google Scholar 

  39. Maul, G. G. (1977) The nuclear and cytoplasmic pore complex: Structure, dynamics, distribution, and evolution. Int. Rev. Cytol. Suppl. 6, 76–187.

    Google Scholar 

  40. Akey, C. W. (1989) Interactions and Structure of the Nuclear-Pore Complex Revealed by Cryo-Electron Microscopy. J. Cell Biol. 109, 955–970.

    Article  CAS  PubMed  Google Scholar 

  41. Goldberg, M. W. and Allen, T. D. (1993) The Nuclear-Pore Complex-3-Dimensional Surface-Structure Revealed by Field-Emission, In-Lens Scanning Electron-Microscopy, with Underlying Structure Uncovered by Proteolysis. J. Cell Sci. 106, 261–274.

    CAS  PubMed  Google Scholar 

  42. Allen, T. D., Cronshaw, J. M., Bagley, S., Kiseleva, E. and Goldberg, M. W. (2000) The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J. Cell Sci. 113, 1651–1659.

    CAS  PubMed  Google Scholar 

  43. Scheer, U., Dabauvalle, M. C, Merkert, H. and Benavente, R. (1988) The nuclear envelope and the organization of the pore complex. Cell Biol. Int. Rep. 12, 669–689.

    Article  CAS  PubMed  Google Scholar 

  44. Unwin, P. N. T. and Milligan, R. A. (1982) A Large Particle Associated with the Perimeter of the Nuclear-Pore Complex. J. Cell Biol. 93, 63–75.

    Article  CAS  PubMed  Google Scholar 

  45. Akey, C. W. and Radermacher, M. (1993) Architecture of the Xenopus Nuclear Pore Complex Revealed by 3-Dimensional Cryoelectron Microscopy. J. Cell Biol. 122, 1–19.

    Article  CAS  PubMed  Google Scholar 

  46. Stoffler, D., Feja, B., Fahrenkrog, B., Walz, J., Typke, D. and Aebi, U. (2003) Cryoelectron tomography provides novel insights into nuclear pore architecture: Implications for nucleocytoplasmic transport. J. Mol. Biol. 328, 119–130.

    Article  CAS  PubMed  Google Scholar 

  47. Akey, C. W. (1990) Visualization of Transport-Related Configurations of the Nuclear-Pore Transporter. Biophys. J. 58, 341–355.

    Article  CAS  PubMed  Google Scholar 

  48. Kiseleva, E., Goldberg, M. W., Allen, T. D. and Akey, C. W. (1998) Active nuclear pore complexes in Chironomus: visualization of transporter configurations related to mRNP export. J. Cell Sci. 111, 223–236.

    CAS  PubMed  Google Scholar 

  49. Beck, M., Forster, F., Ecke, M., et al. (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390.

    Article  CAS  PubMed  Google Scholar 

  50. Rout, M. P. and Blobel, G. (1993) Isolation of the Yeast Nuclear-Pore Complex. J. Cell Biol. 123, 771–783.

    Article  CAS  PubMed  Google Scholar 

  51. Miller, B. R., Powers, M., Park, M., Fischer, W. and Forbes, D. J. (2000) Identification of a new vertebrate nucleoporin, Nup 188, with the use of a novel organelle trap assay. Mol. Biol. Cell 11, 3381–3396.

    CAS  PubMed  Google Scholar 

  52. Rout, M. P., Aitchison, J. D., Suprapto, A., Hjertaas, K., Zhao, Y. M. and Chait, B. T. (2000) The yeast nuclear pore complex: Composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651.

    Article  CAS  PubMed  Google Scholar 

  53. Cronshaw, J. A., Krutchinsky, A. N., Zhang, W. Z., Chait, B. T. and Matunis, M. J. (2002) Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, Q., Rout, M. P. and Akey, C. W. (1998) Three-dimensional architecture of the isolated yeast nuclear pore complex: Functional and evolutionary implications. Mol. Cell 1, 223–234.

    Article  CAS  PubMed  Google Scholar 

  55. Reichelt, R., Holzenburg, A., Buhle, E. L., Jarnik, M, Engel, A. and Aebi, U. (1990) Correlation Between Structure and Mass-Distribution of the Nuclear-Pore Complex and of Distinct Pore Complex Components. J. Cell Biol. 110, 883–894.

    Article  CAS  PubMed  Google Scholar 

  56. Strawn, L. A., Shen, T. X., Shulga, N., Goldfarb, D. S. and Wente, S. R. (2004) Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol. 6, 197–206.

    Article  CAS  PubMed  Google Scholar 

  57. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. and Rexach, M. (2003) Disorder in the nuclear pore complex: The FG repeat regions of nucleoporins are natively unfolded. Proc. Natl. Acad. Sci. USA 100, 2450–2455.

    Article  CAS  PubMed  Google Scholar 

  58. Powers, M. A. and Dasso, M. (2004) Nuclear transport erupts on the slopes of Mount Etna. Nat. Cell Biol. 6, 82–86.

    Article  CAS  PubMed  Google Scholar 

  59. Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. and Hurt, E. (2002) Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBOJ. 21, 387–397.

    Article  CAS  Google Scholar 

  60. Krull, S., Thyberg, J., Bjorkroth, B., Rackwitz, H. R. and Cordes, V. C. (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15, 4261–4277.

    Article  CAS  PubMed  Google Scholar 

  61. Fahrenkrog, B., Maco, B., Fager, A. M., et al. (2002) Domain-specific antibodies reveal multiple-site topology of Nup 153 within the nuclear pore complex. J. Struct. Biol. 140, 254–267.

    Article  CAS  PubMed  Google Scholar 

  62. Devos, D., Dokudovskaya, S., Alber, F., et al. (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380.

    Article  PubMed  CAS  Google Scholar 

  63. Paine, P. L., Moore, L. C. and Horowitz, S. B. (1975) Nuclear envelope permeability. Nature 254, 109–114.

    Article  CAS  PubMed  Google Scholar 

  64. Pappenheimer, J. R., Renkin, E. M. and Borrero, L. M. (1951) Filtration, Diffusion and Molecular Sieving Through Peripheral Capillary Membranes A Contribution to the Pore Theory of Capillary Permeability. Am. J. Physiol. 167, 13–46.

    CAS  PubMed  Google Scholar 

  65. Renkin, E. M. and Curry, F. E. (1979) Transport of water and solutes across endothelium. In Transport Organs (Giebisch, G., ed), Springer-Verlag, Berlin, pp. 1–45.

    Google Scholar 

  66. Keminer, O., Siebrasse, J. P., Zerf, K. and Peters, R. (1999) Optical recording of signalmediated protein transport through single nuclear pore complexes. Proc. Natl. Acad. Sci. USA 96, 11,842–11,847.

    Article  CAS  PubMed  Google Scholar 

  67. Ribbeck, K. and Gorlich, D. (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330.

    Article  CAS  PubMed  Google Scholar 

  68. Siebrasse, J. P. and Peters, R. (2002) Rapid translocation of NTF2 through the nuclear pore of isolated nuclei and nuclear envelopes. EMBO Reports 3, 887–892.

    Article  CAS  PubMed  Google Scholar 

  69. Kalderon, D., Richardson, W. D., Markham, A. F. and Smith, A. E. (1984) Sequence requirements for nuclear location of simian virus-40 large-T-antigen. Nature 311, 33–38.

    Article  CAS  PubMed  Google Scholar 

  70. Dingwall, C, Robbins, J., Dilworth, S. M., Roberts, B. and Richardson, W. D. (1988) The Nucleoplasmin nuclear location sequence is larger and more complex than that of Sv40 large T-antigen. J. Cell Biol, 107, 841–849.

    Article  CAS  PubMed  Google Scholar 

  71. Wen, W., Meinkoth, J. L., Tsien, R. Y. and Taylor, S. S. (1995) Identification of a signal for rapid export of proteins from the nucleus. Mol. Biol. Cell 6, 471.

    Google Scholar 

  72. Fischer, U., Huber, J., Boelens, W. C, Mattaj, I. W. and Luhrmann, R. (1995) The Hiv-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475–483.

    Article  CAS  PubMed  Google Scholar 

  73. Michael, W. M., Choi, M. Y. and Dreyfuss, G. (1995) A nuclear export signal in hnRNP al-a signal-mediated, temperature-dependent nuclear-protein export pathway. Cell 83, 415–422.

    Article  CAS  PubMed  Google Scholar 

  74. Nair, R., Carter, P. and Rost, B. (2003) NLSdb: database of nuclear localization signals. Nucleic Acids Res. 31, 397–399.

    Article  CAS  PubMed  Google Scholar 

  75. Gorlich, D. and Kutay, U. (1999) Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660.

    Article  CAS  PubMed  Google Scholar 

  76. Chook, Y. M. and Blobel, G. (2001) Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715.

    Article  CAS  PubMed  Google Scholar 

  77. Conti, E. and Izaurralde, E. (2001) Nucleocytoplasmic transport enters the atomic age. Curr. Opin. Cell Biol. 13, 310–319.

    Article  CAS  PubMed  Google Scholar 

  78. Andrade, M. A. and Bork, P. (1995) Heat repeats in the Huntingtons-disease protein. Nat. Genet. 11, 115–116.

    Article  CAS  PubMed  Google Scholar 

  79. Fukuhara, N., Fernandez, E., Ebert, J., Conti, E. and Svergun, D. (2004) Conformational variability of nucleo-cytoplasmic transport factors. J. Biol. Chem. 279, 2176–2181.

    Article  CAS  PubMed  Google Scholar 

  80. Fornerod, M., Ohno, M., Yoshida, M. and Mattaj, I. W. (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060.

    Article  CAS  PubMed  Google Scholar 

  81. Vetter, I. R. and Wittinghofer, A. (2001) Signal transduction—The guanine nucleotidebinding switch in three dimensions. Science 294, 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  82. Matunis, M. J., Wu, J. A. and Blobel, G. (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAPl, to the nuclear pore complex. J. Cell Biol. 140, 499–509.

    Article  CAS  PubMed  Google Scholar 

  83. Gorlich, D., Pante, N., Kutay, U., Aebi, U. and Bischoff, F. R. (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 55845594.

    Google Scholar 

  84. Kalab, P., Weis, K. and Heald, R. (2002) Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456.

    Article  CAS  PubMed  Google Scholar 

  85. Reed, R. and Hurt, E. (2002) A conserved rnRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531.

    Article  CAS  PubMed  Google Scholar 

  86. Vinciguerra, P. and Stutz, F. (2004) MRNA export: an assembly line from genes to nuclear pores. Curr. Opin. Cell Biol. 16, 285–292.

    Article  CAS  PubMed  Google Scholar 

  87. Dreyfuss, G., Kim, V. N. and Kataoka, N. (2002) Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205.

    Article  CAS  PubMed  Google Scholar 

  88. Le Hir, H., Izaurralde, E., Maquat, L. E. and Moore, M. J. (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869.

    Article  PubMed  Google Scholar 

  89. Kataoka, N., Yong, J., Kim, V. N., et al. (2000) Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 6, 673–682.

    Article  CAS  PubMed  Google Scholar 

  90. Gilbert, W. and Guthrie, C. (2004) The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol. Cell 13, 201–212.

    Article  CAS  PubMed  Google Scholar 

  91. Izaurralde, E. (2004) Directing mRNA export. Nature Struct. Mol. Biol. 11, 210–212.

    Article  CAS  Google Scholar 

  92. Strasser, K. and Hurt, E. (2000) Yralp, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 19, 410–420.

    Article  CAS  PubMed  Google Scholar 

  93. Kang, Y. B. and Cullen, B. R. (1999) The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Develop. 13, 1126–1139.

    Article  CAS  PubMed  Google Scholar 

  94. Rodriguez-Navarro, S., Fischer, T., Luo, M. J., et al. (2004) Susl, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116, 75–86.

    Article  CAS  PubMed  Google Scholar 

  95. Erkmann, J. A. and Kutay, U. (2004) Nuclear export of mRNA: from the site of transcription to the cytoplasm. Exp. Cell Res. 296, 12–20.

    Article  CAS  PubMed  Google Scholar 

  96. Katahira, J., Strasser, K., Podtelejnikov, A., Mann, M., Jung, J. U. and Hurt, E. (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 18, 2593–2609.

    Article  CAS  PubMed  Google Scholar 

  97. Herold, A., Suyama, M., Rodrigues, J. P., et al. (2000) TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol. Cell. Biol. 20, 8996–9008.

    Article  CAS  PubMed  Google Scholar 

  98. Black, B. E., Levesque, L., Holaska, J. M., Wood, T. C. and Paschal, B. M. (1999) Identification of an NTF2-related factor that binds Ran-GTP and regulates nuclear protein export. Mol. Cell. Biol. 19, 8616–8624.

    CAS  PubMed  Google Scholar 

  99. Fribourg, S. and Conti, E. (2003) Structural similarity in the absence of sequence homology of the messenger RNA export factors Mtr2 and p15. EMBO Rep. 4, 699–703.

    Article  CAS  PubMed  Google Scholar 

  100. Liker, E., Fernandez, E., Izaurralde, E. and Conti, E. (2000) The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO J. 19, 5587–5598.

    Article  CAS  PubMed  Google Scholar 

  101. Ho, D. N., Coburn, G. A., Kang, Y. B., Cullen, B. R. and Georgiadis, M. M. (2002) The crystal structure and mutational analysis of a novel RNA-binding domain found in the human Tap nuclear mRNA export factor. Proc. Nad. head. Sci. USA 99, 1888–1893.

    Article  CAS  Google Scholar 

  102. Fribourg, S., Braun, I. C., Izaurralde, E. and Conti, E. (2001) Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol. Cell 8, 645–656.

    Article  CAS  PubMed  Google Scholar 

  103. Grant, R. P., Hurt, E., Neuhaus, D. and Stewart, M. (2002) Structure of the C-terminal FG-nucleoporin binding domain of Tap/NXFl. Nat. Struct. Biol. 9, 247–251.

    Article  CAS  PubMed  Google Scholar 

  104. Stutz, F. and Izaurralde, E. (2003) The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 13, 319–327.

    Article  CAS  PubMed  Google Scholar 

  105. Gruter, P., Tabernero, C, von Kobbe, C, et al. (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649–659.

    Article  CAS  PubMed  Google Scholar 

  106. Bullock, T. L., Clarkson, W. D., Kent, H. M. and Stewart, M. (1996) The 1.6 angstrom resolution crystal structure of nuclear transport factor 2 (NTF2) J. Mol. Biol. 260, 422–431.

    Article  CAS  PubMed  Google Scholar 

  107. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. and Cole, C. N. (1998) Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676.

    Article  CAS  PubMed  Google Scholar 

  108. Maquat, L. E. (2004) Nonsense-mediated mRNA decay: Splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99.

    Article  CAS  PubMed  Google Scholar 

  109. Rexach, M. and Blobel, G. (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692.

    Article  CAS  PubMed  Google Scholar 

  110. Feldherr, C. M. and Akin, D. (1997) The location of the transport gate in the nuclear pore complex. J. Cell Sci. 110, 3065–3070.

    CAS  PubMed  Google Scholar 

  111. Bayliss, R., Corbett, A. H. and Stewart, M. (2000) The molecular mechanism of transport of macromolecules through nuclear pore complexes. Traffic 1, 448–456.

    Article  CAS  PubMed  Google Scholar 

  112. Ben-Efraim, I. and Gerace, L. (2001) Gradient of increasing affinity of importin beta for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–417.

    Article  CAS  PubMed  Google Scholar 

  113. Bickel, T. and Bruinsma, R. (2002) The nuclear pore complex mystery and anomalous diffusion in reversible gels. Biophys. J. 83, 3079–3087.

    Article  CAS  PubMed  Google Scholar 

  114. Kustanovich, T. and Rabin, Y. (2004) Metastable network model of protein transport through nuclear pores. Biophys. J. 86, 2008–2016.

    Article  CAS  PubMed  Google Scholar 

  115. Fahrenkrog, B., Koser, J. and Aebi, U. (2004) The nuclear pore complex: a jack of all trades? Trends Biochem. Sci. 29, 175–182.

    Article  CAS  PubMed  Google Scholar 

  116. Peters, R. (2005) Translocation through the nuclear pore complex: Selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427.

    Article  CAS  PubMed  Google Scholar 

  117. Shulga, N. and Goldfarb, D. S. (2003) Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating. Mol. Cell. Biol. 23, 534–542.

    Article  CAS  PubMed  Google Scholar 

  118. Grote, M., Kubitscheck, U., Reichelt, R. and Peters, R. (1995) Mapping of Nucleoporins to the Center of the Nuclear-Pore Complex by Postembedding Immunogold Electron-Microscopy. J. Cell Sci. 108, 2963–2972.

    CAS  PubMed  Google Scholar 

  119. Kubitscheck, U., Griinwald, D., Hoekstra, A., et al. (2005) Nuclear transport of single molecules: Dwell times at the nuclear pore complex. J. Cell Biol. 168, 233–243.

    Article  PubMed  CAS  Google Scholar 

  120. Stewart, M., Baker, R. P., Bayliss, R., et al. (2001) Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import. FEBS Lett. 498, 145–149.

    Article  CAS  PubMed  Google Scholar 

  121. Zeitler, B. and Weis, K. (2004) The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo. J. Cell Biol. 167, 583–590.

    Article  CAS  PubMed  Google Scholar 

  122. Ribbeck, K. and Gorlich, D. (2002) The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671.

    Article  CAS  PubMed  Google Scholar 

  123. Berg, O. G. and von Hippel, P. H. (1985) Diffusion-controlled macromolecular interactions. Anna. Rev. Biophys. Biophys. Chem. 14, 131–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Peters, R. (2006). Introduction to Nucleocytoplasmic Transport. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics