Skip to main content

Chromatin Immunoprecipitation for Studying Transcriptional Regulation in Xenopus Oocytes and Tadpoles

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

Understanding the accurate temporal and spatial regulation of gene expression during development requires knowledge of the spectrum of transcription factors and cofactors involved and their functional interplay with chromatin. Chromatin immunoprecipitation (ChIP) has become a powerful technique that allows us to do so. A typical ChIP assay involves (1) treating cells or tissues with formaldehyde to rapidly crosslink chromatin-associated proteins to DNA, (2) shearing chromatin by sonication into small fragments, (3) immunoprecipitation of the proteins of interest, (4) reversal of crosslinking, and (5) quantitating the specific associated DNA sequences by PCR. Here we present and discuss the protocols we have developed over the years for ChIP assays using Xenopus oocytes and tadpole tissues as experimental materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger, S. L. (2002) Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148.

    Article  CAS  PubMed  Google Scholar 

  2. Fischle, W., Wang, Y., and Allis, C. D. (2003) Histone and chromatin cross-talk. Curr. Opin. Cell. Biol. 15, 172–183.

    Article  CAS  PubMed  Google Scholar 

  3. Levine, M. and Tjian, R. (2003) Transcription regulation and animal diversity. Nature 424, 147–151.

    Article  CAS  PubMed  Google Scholar 

  4. Li, E. (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3, 662–673.

    Article  CAS  PubMed  Google Scholar 

  5. Kuo, M. H. and Allis, C. D. (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433.

    Article  CAS  PubMed  Google Scholar 

  6. Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci. 25, 99–104.

    Article  CAS  PubMed  Google Scholar 

  7. Jackson, V. (1978) Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell 15, 945–954.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson, V. and Chalkley, R. (1981) A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell 23, 121–134.

    Article  CAS  PubMed  Google Scholar 

  9. Li, J., Lin, Q., Wang, W., Wade, P., and Wong, J. (2002) Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev. 16, 687–692.

    Article  CAS  PubMed  Google Scholar 

  10. Li, J., Lin, Q., Yoon, H. G., Huang, Z. Q., Strahl, B. D., Allis, C. D., and Wong, J. (2002) Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor. Mol. Cell Biol. 22, 5688–5697.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, Z. Q., Li, J., Sachs, L. M., Cole, P. A., and Wong, J. (2003) A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and mediator for transcription. EMBO J. 22, 2146–2155.

    Article  CAS  PubMed  Google Scholar 

  12. Sachs, L. M. and Shi, Y. B. (2000) Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc. Natl. Acad. Sci USA 97, 13,138–13,143.

    Article  CAS  PubMed  Google Scholar 

  13. Tomita, A., Buchholz, D. R., and Shi, Y. B. (2004) Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol. Cell Biol. 24, 3337–3346.

    Article  CAS  PubMed  Google Scholar 

  14. Buchholz, D. R., Hsia, S. C., Fu, L., and Shi, Y. B. (2003) A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol. Cell Biol. 23, 6750–6758.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, H. C., Beer, B., Sassano, D., Blume, A. J., and Ziai, M. R. (1991) Gene expression in Xenopus oocytes. Int. J. Biochem. 23, 271–276.

    Article  CAS  PubMed  Google Scholar 

  16. Wong, J., Shi, Y. B., and Wolffe, A. P. (1995) A role for nucleosome assembly in both silencing and activation of the Xenopus TR β A gene by the thyroid hormone receptor. Genes Dev. 9, 2696–2711.

    Article  CAS  PubMed  Google Scholar 

  17. Wolffe, A. P., Wong, J., Li, Q., Levi, B. Z., and Shi, Y. B. (1997) Three steps in the regulation of transcription by the thyroid hormone receptor: establishment of a repressive chromatin structure, disruption of chromatin and transcriptional activation. Biochem. Soc. Trans. 25, 612–615.

    CAS  PubMed  Google Scholar 

  18. Wong, J. (2002) Transcriptional regulation by thyroid hormone receptor in chromatin. Methods Mol. Biol. 202, 177–194.

    CAS  PubMed  Google Scholar 

  19. Nieuwkoop, P. D. and Faber, J. (1956) Normal Table of Xenopus laevis. North Holland Publishing, Amsterdam, The Netherlands.

    Google Scholar 

  20. Wong, J. and Shi, Y. B. (1995) Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors. J. Biol. Chem. 270, 18,479–18,483.

    Article  CAS  PubMed  Google Scholar 

  21. Sachs, L. M., Jones, P. L., Havis, E., Rouse, N., Demeneix, B. A., and Shi, Y. B. Nuclear receptor corepressor recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development. Mol. Cell Biol. 22, 8527–8538.

    Google Scholar 

  22. De Robertis, E. M. and Mertz, J. E. (1977) Coupled transcription-translation of DNA injected into Xenopus oocytes. Cell 12, 175–182.

    Article  PubMed  Google Scholar 

  23. Mertz, J. E. and Gurdon, J. B. (1977) Purified DNAs are transcribed after microinjection into Xenopus oocytes. Proc. Natl. Acad. Sci. USA 74, 1502–1506.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, H. C., Beer, B., Sassano, D., Blume, A. J., and Ziai, M. R. (1991) Gene expression in Xenopus oocytes. Int. J. Biochem. 23, 271–276.

    Article  CAS  PubMed  Google Scholar 

  25. Etkin, L. D. (1982) Analysis of the mechanisms involved in gene regulation and cell differentiation by microinjection of purified genes and somatic cell nuclei into amphibian oocytes and eggs. Differentiation 21, 149–159.

    Article  CAS  PubMed  Google Scholar 

  26. Laskey, R. A., Mills, A. D., and Morris, N. R. (1977) Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10, 237–243.

    Article  CAS  PubMed  Google Scholar 

  27. Wickens, M. P., Woo, S., O’Malley, B. W., and Gurdon, J. B. (1980) Expression of a chicken chromosomal ovalbumin gene injected into frog oocyte nuclei. Nature 285, 628–634.

    Article  CAS  PubMed  Google Scholar 

  28. Almouzni, G. and Wolffe, A. P. (1993) Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev. 7, 2033–2047.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, M. and Gerhart, J. Raising Xenopus in the laboratory. (1991) Methods Cell Biol. 36, 3–18.

    Article  CAS  PubMed  Google Scholar 

  30. Smith, L. D., Xu, W. L., and Varnold, R. L. Oogenesis and oocyte isolation. (1991) Methods Cell Biol. 36, 45–60.

    Article  CAS  PubMed  Google Scholar 

  31. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K. (2000) Current Protocols in Molecular Biology. John Wiley & Sons, Inc., Hoboken, NJ.

    Google Scholar 

  32. Dodd, M. H. I. and Dodd, J. M. (1976) The biology of metamorphosis, in Physiology of the Amphibia (Lofts, B., ed.), Academic Press, New York, pp. 185–223.

    Google Scholar 

  33. Shi, Y. B., Sachs, L. M., Jones, P., Li, Q., and Ishizuya-Oka, A. (1998) Thyroid hormone regulation of Xenopus laevis metamorphosis: functions of thyroid hormone receptors and roles of extracellular matrix remodeling. Wound Repair Regen. 6, 314–322.

    Article  CAS  PubMed  Google Scholar 

  34. Kay, B. K. (1991) Xenopus laevis practical uses in cell and molecular biology. Injections of oocytes and embryos. Methods Cell Biol. 36, 663–669.

    Article  CAS  PubMed  Google Scholar 

  35. Ranjan, M., Wong, J., and Shi, Y. B. (1994) Transcriptional repression of Xenopus TR β gene is mediated by a thyroid hormone response element located near the start site. J. Biol. Chem. 269, 24,699–24,705.

    CAS  PubMed  Google Scholar 

  36. Furlow, J. D. and Brown, D. D. (1999) In vitro and in vivo analysis of the regulation of a transcription factor gene by thyroid hormone during Xenopus laevis metamorphosis. Mol. Endocrinol. 13, 2076–2089.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stewart, D., Tomita, A., Shi, YB., Wong, J. (2006). Chromatin Immunoprecipitation for Studying Transcriptional Regulation in Xenopus Oocytes and Tadpoles. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics