Skip to main content

Pre-mRNA Splicing in the Nuclei of Xenopus Oocytes

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

Xenopus oocytes have been utilized in a number of laboratories as an experimental system to study a variety of biological processes. Here, we describe its application to functional studies of spliceosomal small nuclear RNAs (snRNAs) in pre-messenger RNA (pre-mRNA) splicing, a process that occurs extremely efficiently in Xenopus oocytes. A DNA oligonucleotide complementary to an snRNA of interest is injected into the oocyte cytoplasm. The oligonucleotide subsequently diffuses into the nucleus and hybridizes to the target snRNA, thereby triggering snRNA degradation via endogenous RNase H activity. By the time the endogenous snRNA is depleted, the DNA oligonucleotide itself is degraded by endogenous deoxyribonuclease (DNase) activity. In principle, this procedure enables one to quantitatively deplete any snRNA of choice. Subsequently, a rescuing snRNA that is constructed in vitro may be injected into the snRNA-depleted oocytes to restore the splicing function. After reconstitution, a radiolabeled splicing substrate is injected into the nuclei of the oocytes. These oocyte nuclei are then manually isolated and used to prepare both nuclear RNA for splicing assays and nuclear extract for spliceosome assembly assays. The ability of an injected rescuing snRNA to reconstitute splicing can therefore be tested. Because all types of rescuing snRNAs (e.g., mutant snRNAs, snRNAs with or without modified nucleotides) can be constructed readily, the results obtained from this procedure provide valuable information on the function of a particular snRNA of interest in pre-mRNA splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharp, P. A. (1994) Split genes and RNA splicing. (Nobel Lecture). Cell 77, 805–815.

    Article  CAS  PubMed  Google Scholar 

  2. Burge, C. B., Tuschl, T. H., and Sharp. P. A. (1999) Splicing of precursors to mRNAs by the spliceosome, in The RNA World, 2nd ed. (Gesteland, R. F., Cech, T. R., and Atkins, J. F., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 525–560.

    Google Scholar 

  3. Yu, Y.-T., Scharl, E. C, Smith, C. M., and Steitz, J. A. (1999) The growing world of small nuclear ribonucleoprotein particles, in The RNA World, 2nd ed. (Gesteland, R. F., Cech, T. R., and Atkins, J. F., eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 487–524.

    Google Scholar 

  4. Staley, J. P. and Guthrie, C. (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326.

    Article  CAS  PubMed  Google Scholar 

  5. Guthrie, C. (1988) Genetic analysis of yeast snRNAs, in Structure and Function of Major and Minor snRNPs (Birnstiel, M., ed.), Springer-Verlag, Berlin, Germany, pp. 196–211.

    Google Scholar 

  6. Lin, R. J., Newman, A. J., Cheng, S. C, and Abelson, J. (1985) Yeast mRNA splicing in vitro. J. Biol. Chem. 260, 14,780–14,792.

    CAS  PubMed  Google Scholar 

  7. Padgett, R. A., Hardy, S. F., and Sharp, P. A. (1983) Splicing of adenovirus RNA in a cell-free transcription system. Proc. Natl. Acad. Sci. USA. 80, 5230–5234.

    Article  CAS  PubMed  Google Scholar 

  8. Grabowski, P. J., Padgett, R. A., and Sharp, P. A. (1984) Messenger RNA splicing in vitro: an excised intervening sequence and a potential intermediate. Cell 37, 415–427.

    Article  CAS  PubMed  Google Scholar 

  9. Krainer, A. R., Maniatis, T., Ruskin, B., and Green, M. R. (1984) Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36, 993–1005.

    Article  CAS  PubMed  Google Scholar 

  10. Ruskin, B., Krainer, A. R., Maniatis, T., and Green, M. R. (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38, 317–331.

    Article  CAS  PubMed  Google Scholar 

  11. Rio, D. C. (1988) Accurate and efficient pre-mRNA splicing in Drosophila cell-free extracts. Proc. Nad. Acad. Sci. USA 85, 2904–2908.

    Article  CAS  Google Scholar 

  12. Spikes, D. and Bingham, P. M. (1992) Analysis of spliceosome assembly and the structure of a regulated intron in Drosophila in vitro splicing extracts. Nucleic Acids Res. 20, 5719–5727.

    Article  CAS  PubMed  Google Scholar 

  13. Pan, Z. Q. and Prives, C. (1989) U2 snRNA sequences that bind U2-specific proteins are dispensable for the function of U2 snRNP in splicing. Genes Dev. 3, 1887–1898.

    Article  CAS  PubMed  Google Scholar 

  14. Hamm, J., Dathan, N. A., and Mattaj, I. W. (1989) Functional analysis of mutant Xenopus U2 snRNAs. Cell 59, 159–169.

    Article  CAS  PubMed  Google Scholar 

  15. Hannon, G. J., Maroney, P. A., Denker, J. A., and Nilsen, T. W. (1990) Trans splicing of nematode pre-messenger RNA in vitro. Cell 61, 1247–1255.

    Article  CAS  PubMed  Google Scholar 

  16. Black, D. L. (1992) Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 69, 795–807.

    Article  CAS  PubMed  Google Scholar 

  17. Yu, Y.-T., Shu, M.-D., and Steitz, J. A. (1998) Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J. 17, 5783–5795.

    Article  CAS  PubMed  Google Scholar 

  18. Evans, J. P. and Kay, B. K. (1991) Biochemical fractionation of oocytes. Methods Cell Biol. 36, 133–148.

    Article  CAS  PubMed  Google Scholar 

  19. Forbes, D. J., Kornberg, T. B., and Kirschner, M. W. (1983) Small nuclear RNA transcription and ribonucleoprotein assembly in early Xenopus development. J. Cell Biol. 97, 62–72.

    Article  CAS  PubMed  Google Scholar 

  20. Hamm, J. and Mattaj, 1. W. (1989) An abundant U6 snRNP found in germ cells and embryos of Xenopus laevis. EMBO J. 8, 4179–4187.

    CAS  PubMed  Google Scholar 

  21. Peculis, B. A. and Steitz, J. A. (1994) Sequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionary conserved. Genes Dev. 8, 2241–2255.

    Article  CAS  PubMed  Google Scholar 

  22. Peculis, B. A. and Steitz, J. A. (1993) Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73, 1233–1245.

    Article  CAS  PubMed  Google Scholar 

  23. Tycowski, K. T., Shu, M.-D., and Steitz, J. A. (1994) Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 266, 1558–1561.

    Article  CAS  PubMed  Google Scholar 

  24. Mattaj, I. W. (1986) Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 46, 905–911.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, X. and Yu, Y.-T. (2004) Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA 10, 681–690.

    Article  CAS  PubMed  Google Scholar 

  26. Kornarska, M. M. (1990) Analysis of splicing complexes and small nuclear ribonucleoprotein particles by native gel electrophoresis. Methods Enzymol. 180, 442–453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Moon, K.H., Zhao, X., Yu, YT. (2006). Pre-mRNA Splicing in the Nuclei of Xenopus Oocytes. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics