Skip to main content

Developments in Strain Improvement Technology

Evolutionary Engineering of Industrial Microorganisms Through Gene, Pathway, and Genome Shuffling

  • Chapter
Natural Products

Abstract

The development of an economically viable production processes is a significant hurdle in the commercialization of natural products. A primary method of achieving this goal is through strain engineering. Evolutionary engineering has been practiced for decades in the form of classic strain improvement. The process of genetic diversification and functional screening has now become a powerful means of improving the function of diverse biological systems from genes and enzymes to whole genomes. Gene shuffling is a method for effecting genetic diversification in evolutionary engineering programs that incorporates recombination into the evolutionary algorithm. This approach dramatically accelerates the process of directed evolution and is arguably the most robust method for the purposeful manipulation of biological structure and function. This chapter reviews the theory and practice of gene shuffling-mediated evolutionary engineering in the context of commercial strain improvement. Described are examples of the improvement of commercial natural-product fermentation processes through the shuffling of individual genes, metabolic pathways, and whole genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zazopoulos E, Huang K, Staffa A, et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 2003;21:187–190.

    Article  PubMed  CAS  Google Scholar 

  2. Miao V, Coeffet-LeGal MF, Brown D, Sinnemann S, Donaldson G, Davies J. Genetic approaches to harvesting lichen products. Trends Biotechnol 2001;19:349–355.

    Article  PubMed  CAS  Google Scholar 

  3. Seow KT, Meurer G, Gerlitz M, Wendt-Pienkowski E, Hutchinson CR, Davies J. A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J Bacteriol 1997;179:7360–7368.

    PubMed  CAS  Google Scholar 

  4. Wang GY, Graziani E, Waters B, et al. Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2000;2:2401–2404.

    Article  PubMed  CAS  Google Scholar 

  5. Mikhailov VV, Kuznetsova TA, Eliakov GB. [Bioactive compounds from marine actinomycetes]. Bioorg Khim 1995;21:3–8.

    PubMed  CAS  Google Scholar 

  6. Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ. Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1999;1:33–43.

    PubMed  CAS  Google Scholar 

  7. Wagner-Dobler I, Beil W, Lang S, Meiners M, Laatsch H. Integrated approach to explore the potential of marine microorganisms for the production of bioactive metabolites. Adv Biochem Eng Biotechnol 2002;74:207–238.

    PubMed  CAS  Google Scholar 

  8. Schloss PD, Handelsman J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol 2003;14:303–310.

    Article  PubMed  CAS  Google Scholar 

  9. Cropp TA, Kim BS, Beck BJ, Yoon YJ, Sherman DH, Reynolds KA. Recent developments in the production of novel polyketides by combinatorial biosynthesis. Biotechnol Genet Eng Rev 2002;19:159–172.

    PubMed  CAS  Google Scholar 

  10. Reeves CD. The enzymology of combinatorial biosynthesis. Crit Rev Biotechnol 2003;23:95–147.

    Article  PubMed  CAS  Google Scholar 

  11. Michels PC, Khmelnitsky YL, Dordick JS, Clark DS. Combinatorial biocatalysis: a natural approach to drug discovery. Trends Biotechnol 1998;16:210–215.

    Article  PubMed  CAS  Google Scholar 

  12. Rich JO, Michels PC, Khmelnitsky YL. Combinatorial biocatalysis. Curr Opin Chem Biol 2002;6:161–167.

    Article  PubMed  CAS  Google Scholar 

  13. Reisman RB. Economics. In: Demain AL, Davies JE (eds), Manual of Industrial Microbiology and Bitechnology. Second edition. American Society of Microbiology, Washington, DC: 1999:273–288.

    Google Scholar 

  14. Aharonowitz Y, Cohen G. The microbiological production of pharmaceuticals. Sci Am 1981;245:141–152.

    Article  Google Scholar 

  15. Askenazi M, Driggers EM, Holtzman DA, et al. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 2003;21:150–156.

    Article  PubMed  CAS  Google Scholar 

  16. Baltz RH, McHenney MA, Cantwell CA, Queener SW, Solenberg PJ. Applications of transposition mutagenesis in antibiotic producing streptomycetes. Antonie Van Leeuwenhoek 1997;71:179–187.

    Article  PubMed  CAS  Google Scholar 

  17. de Graaf AA, Eggeling L, Sahm H. Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 2001;73:9–29.

    PubMed  Google Scholar 

  18. Paradkar AS, Mosher RH, Anders C, et al. Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. Appl Environ Microbiol 2001;67:2292–2297.

    Article  PubMed  CAS  Google Scholar 

  19. Ohnishi J, Mitsuhashi S, Hayashi M, et al. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 2002;58:217–223.

    Article  PubMed  CAS  Google Scholar 

  20. Queener SW, Lively DH. Screening and selection for strain improvement. In: Demain AL, Solomon NA (eds), Manual of Industrial Microbiology and Biotechnology. American Society of Microbiology, Washington, DC:1986;155–169.

    Google Scholar 

  21. Baltz RH. Mutagenesis in Streptomyces spp. In: Demain AL, Solomon NA (eds), Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washington, DC: 1986;184–190.

    Google Scholar 

  22. Baltz RH. Molecular genetic approaches to yield improvement in actinomycetes. In: Strohl WR (ed), Biotechnology of Antibiotics. Vol 82. second ed. Marcel Dekker, New York: 1997:49–62.

    Google Scholar 

  23. Vinci VA, Byng G. Strain improvement by non-recombinant methods. In: Demain AL, Davies JE (eds), Manual of Industrial Microbiology and Biotechnology. 2 ed. ASM, Washington, DC: 1999;103–113.

    Google Scholar 

  24. Ellington AD, Szostak JW. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 1992:355:850–852.

    Article  PubMed  CAS  Google Scholar 

  25. Bartel DP, Szostak JW. Isolation of new ribozymes from a large pool of random sequences [see comment]. Science 1993;261:1411–1418.

    Article  PubMed  CAS  Google Scholar 

  26. Chapman KB, Szostak JW. In vitro selection of catalytic RNAs. Curr Opin Struct Biol 1994;4:618–622.

    Article  PubMed  CAS  Google Scholar 

  27. Stemmer WP. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 1994;91:10,747–10,751.

    Article  PubMed  CAS  Google Scholar 

  28. Stemmer WP. Rapid evolution of a protein in vitro by DNA shuffling. Nature 1994;370:389–391.

    Article  PubMed  CAS  Google Scholar 

  29. Crameri A, Raillard SA, Bermudez E, Stemmer WP. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 1998;391:288–291.

    Article  PubMed  CAS  Google Scholar 

  30. Ness JE, Welch M, Giver L, et al. DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol 1999;17:893–896.

    Article  PubMed  CAS  Google Scholar 

  31. Ness JE, Kim S, Gottman A, et al. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat Biotechnol 2002;20:1251–1255.

    Article  PubMed  CAS  Google Scholar 

  32. Govindarajan S, Ness JE, Kim S, Mundorff EC, Minshull J, Gustafsson C. Systematic variation of amino acid substitutions for stringent assessment of pairwise covariation. J Mol Biol 2003;328:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  33. Gustafsson C, Govindarajan S, Emig R. Exploration of sequence space for protein engineering. J Mol Recognit 2001;14:308–314.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 2002;415:644–646.

    Article  PubMed  CAS  Google Scholar 

  35. Patnaik R, Louie S, Gavrilovic V, et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 2002;20:707–712.

    Article  PubMed  CAS  Google Scholar 

  36. Stutzman-Engwall K, Conlon S, Fedechko R, et al. Engineering the aveC gene to enhance the ratio of doramectin to its CHC-B2 analogue produced in Streptomyces avermitilis. Biotechnol Bioeng 2003;82:359–369.

    Article  PubMed  CAS  Google Scholar 

  37. Reetz MT. An overview of high-throughput screening systems for enantioselective enzymatic transformations. Methods Mol Biol 2003;230:259–282.

    PubMed  CAS  Google Scholar 

  38. Minas W, Bailey JE, Duetz W. Streptomycetes in micro-cultures: growth, production of secondary metabolites, and storage and retrieval in the 96-well format. Antonie Van Leeuwenhoek 2000;78:297–305.

    Article  PubMed  CAS  Google Scholar 

  39. Duetz WA, Ruedi L, Hermann R, O’Connor K, Buchs J, Witholt B. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl Environ Microbiol 2000;66:2641–2646.

    Article  PubMed  CAS  Google Scholar 

  40. Duetz WA, Witholt B. Effectiveness of orbital shaking for the aeration of suspended bacterial cultures in square-deepwell microtiter plates. Biochem Eng J 2001;7:113–115.

    Article  PubMed  CAS  Google Scholar 

  41. Maharbiz MM, Holtz WJ, Howe RT, Keasling JD. Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnol Bioeng 2004;85:376–381.

    Article  PubMed  CAS  Google Scholar 

  42. Powell KA, Ramer SW, Del Cardayre SB, et al. Directed evolution and biocatalysis. Angew Chem Int Ed Engl 2001;40:3948–3959.

    Article  PubMed  CAS  Google Scholar 

  43. Giver L, Arnold FH. Combinatorial protein design by in vitro recombination. Curr Opin Chem Biol 1998;2:335–338.

    Article  PubMed  CAS  Google Scholar 

  44. del Cardayre S, Powell K. DNA shuffling for whole cell engineering. In: Vinci VA, Parekh SR (eds), Handbook of Industrial Cell Culture. Humana, Totowa, New Jersey: 2003;465–482.

    Google Scholar 

  45. Ikeda H, Omura S. Avermectin biosynthesis. Chem Rev 1997;97:2591–2610.

    Article  PubMed  CAS  Google Scholar 

  46. Stutzman-Engwall KJ, Katoh Y, McArthur HAI, Stutzman-Engwall KJ, Katoh Y, McArthur HAIStutzman-Engwall KJ, Katoh Y, McArthur HAIs, Pfizer, Assignee. Streptomyces avermitilis gene directing the ratio of B1:B2 avermectins. US patent US6248579. June 19, 2001.

    Google Scholar 

  47. Stutzman-Engwall K, Conlon S, Fedechko R, et al. Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of Doramectin by Streptomyces avermitilis. Metab Eng 2004, in press.

    Google Scholar 

  48. Ran N, Draths KM, Frost JW. Creation of a shikimate pathway variant. J Am Chem Soc 2004, in press.

    Google Scholar 

  49. Crameri A, Dawes G, Rodriguez E, Jr., Silver S, Stemmer WP. Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol 1997;15:436–438.

    Article  PubMed  CAS  Google Scholar 

  50. Newman L, Garcia H, Hudlickey T, Selifonov S. Directed evolution of the dioxygenase complex for the synthesis of furanone flavor compounds. Tetrahedron 2004;60:729–734.

    Article  CAS  Google Scholar 

  51. Hopwood DA, Wright HM, Bibb MJ, Cohen SN. Genetic recombination through protoplast fusion in Streptomyces. Nature 1977;268:171–174.

    Article  PubMed  CAS  Google Scholar 

  52. Baltz RH. Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. J Gen Microbiol 1978;107:93–102.

    PubMed  CAS  Google Scholar 

  53. Hopwood DA, Wright HM. Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor. Mol Gen Genet 1978;162:307–317.

    Article  PubMed  CAS  Google Scholar 

  54. Hopwood DA, Chater KF. Fresh approaches to antibiotic production. Philos Trans R Soc Lond B Biol Sci 1980;290:313–328.

    Article  PubMed  CAS  Google Scholar 

  55. Hopwood DA. The many faces of recombination. In: Sebek OK, Laskin AI (eds), Genetics of Industrial Microorganisms. Washington, DC: American Society for Microbiology. 1979:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

del Cardayré, S.B. (2005). Developments in Strain Improvement Technology. In: Zhang, L., Demain, A.L. (eds) Natural Products. Humana Press. https://doi.org/10.1007/978-1-59259-976-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-976-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-383-1

  • Online ISBN: 978-1-59259-976-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics