Skip to main content

Detection of Cardiac Signaling in the Injured and Hypertrophied Heart

  • Protocol
Molecular Cardiology

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 112))

Abstract

Cardiac hypertrophy is a compensatory response to a variety of physiologi cal or pathological stimuli. However, prolonged hypertrophic responses may eventually lead to heart failure, arrhythmia, and sudden death. A number of intracellular signaling pathways have been implicated to play a critical role in the regulation of cardiac hypertrophy. In this chapter, the mitogen-activated protein kinase signaling pathway is used to illustrate conventional assays to detect the expression, phosphorylation, and activation of signaling proteins during cardiac hypertrophy, including Western blot, immunohistochemical staining, and immune complex kinase assays. Newly emerging techniques for analyzing cell signaling are also discussed in this chapter. Identifying and char acterizing the expression and activation of these signaling proteins will pro vide important insights into the mechanisms that regulate hypertrophic cell growth and assist in development of new therapeutic approaches to limit car diac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Molkentin, J. D. and Dorn, I. G. 2nd. (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426.

    Article  PubMed  CAS  Google Scholar 

  2. Aikawa, R., Komuro, I., Yamazaki, T., et al. (1999) Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ. Res. 84, 458–466.

    PubMed  CAS  Google Scholar 

  3. Clerk, A. and Sugden, P. H. (2000) Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ. Res. 86, 1019–1023.

    PubMed  CAS  Google Scholar 

  4. Sugden, P. H. (1999) Signaling in myocardial hypertrophy: life after calcineurin? Circ. Res. 84, 633–646.

    PubMed  CAS  Google Scholar 

  5. Williams, R. S. (2002) Calcineurin signaling in human cardiac hypertrophy. Cir culation 105, 2242–2243.

    CAS  Google Scholar 

  6. Bueno, O. F., De Windt, L. J., Tymitz, K. M., et al. (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350.

    Article  PubMed  CAS  Google Scholar 

  7. Bueno, O. F. and Molkentin, J. D. (2002) Involvement of extracellular signal-regu lated kinases 1/2 in cardiac hypertrophy and cell death. Circ. Res. 91, 776–781.

    Article  PubMed  CAS  Google Scholar 

  8. Choukroun, G., Hajjar, R., Fry, S., et al. (1999) Regulation of cardiac hypertro phy in vivo by the stress-activated protein kinases/c-Jun NH(2)-terminal kinases. J. Clin. Invest. 104, 391–398.

    Article  PubMed  CAS  Google Scholar 

  9. Haq, S., Choukroun, G., Lim, H., et al. (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103, 670–677.

    PubMed  CAS  Google Scholar 

  10. Takeishi, Y., Huang, Q., Abe, J., et al. (2001) Src and multiple MAP kinase acti vation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J. Mol. Cell. Cardiol. 33, 1637–1648.

    Article  PubMed  CAS  Google Scholar 

  11. Takeishi, Y., Ping, P., Bolli, R., Kirkpatrick, D. L., Hoit, B. D., and Walsh, R. A. (2000) Transgenic overexpression of constitutively active protein kinase C epsi lon causes concentric cardiac hypertrophy. Circ. Res. 86, 1218–1223.

    PubMed  CAS  Google Scholar 

  12. Haq, S., Choukroun, G., Kang, Z. B., et al. (2000) Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J. Cell. Biol. 151, 117–130.

    Article  PubMed  CAS  Google Scholar 

  13. Hardt, S. E. and Sadoshima, J. (2002) Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ. Res. 90, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  14. Booz, G. W., Day, J. N., and Baker, K. M. (2002) Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure. J. Mol. Cell. Cardiol. 34, 1443–1453.

    Article  PubMed  CAS  Google Scholar 

  15. Hirotani, S., Otsu, K., Nishida, K., et al. (2002) Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105, 509–515.

    Article  PubMed  CAS  Google Scholar 

  16. Lange-Carter, C. A., Pleiman, C. M., Gardner, A. M., Blumer, K. J., and Johnson, G. L. (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260, 315–319.

    Article  PubMed  CAS  Google Scholar 

  17. Sugden, P. H. and Clerk, A. (1998) “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ. Res. 83, 345–352.

    PubMed  CAS  Google Scholar 

  18. Lee, J. D., Ulevitch, R. J., and Han, J. (1995) Primary structure of BMK1: a new mammalian map kinase. Biochem. Biophys. Res. Commun. 213, 715–724.

    Article  PubMed  CAS  Google Scholar 

  19. Widmann, C., Gibson, S., Jarpe, M. B., and Johnson, G. L. (1999) Mitogen-acti vated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143–180.

    PubMed  CAS  Google Scholar 

  20. Rapacciuolo, A., Esposito, G., Caron, K., Mao, L., Thomas, S. A., and Rockman, H. A. (2001) Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol. 38, 876–882.

    Article  PubMed  CAS  Google Scholar 

  21. Gillespie-Brown, J., Fuller, S. J., Bogoyevitch, M. A., Cowley, S., and Sugden, P. H. (1995) The mitogen-activated protein kinase kinase MEK1 stimulates a pat tern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiomyocytes. J. Biol. Chem. 270, 28,092–28,096.

    Article  PubMed  CAS  Google Scholar 

  22. Kodama, H., Fukuda, K., Pan, J., et al. (2000) Significance of ERK cascade com pared with JAK/STAT and PI3-K pathway in gp130-mediated cardiac hypertro phy. Am. J. Physiol. Heart Circ. Physiol. 279, H1635–1644.

    PubMed  CAS  Google Scholar 

  23. Yue, T. L., Gu, J. L., Wang, C., et al. (2000) Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J. Biol. Chem. 275, 37,895–37,901.

    Article  PubMed  CAS  Google Scholar 

  24. Clerk, A., Michael, A., and Sugden, P. H. (1998) Stimulation of the p38 mitogen activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in car diac myocyte hypertrophy? J. Cell. Biol. 142, 523–535.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, Y., Huang, S., Sah, V. P., et al. (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J. Biol. Chem. 273, 2161–2168.

    Article  PubMed  CAS  Google Scholar 

  26. Nemoto, S., Sheng, Z., and Lin, A. (1998) Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol. Cell. Biol. 18, 3518–3526.

    PubMed  CAS  Google Scholar 

  27. Komuro, I., Kudo, S., Yamazaki, T., Zou, Y., Shiojima, I., and Yazaki, Y. (1996) Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 10, 631–636.

    PubMed  CAS  Google Scholar 

  28. Thorburn, J., Xu, S., and Thorburn, A. (1997) MAP kinase-and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J. 16, 1888–1900.

    Article  PubMed  CAS  Google Scholar 

  29. Ramirez, M. T., Sah, V. P., Zhao, X. L., Hunter, J. J., Chien, K. R., and Brown, J. H. (1997) The MEKK-JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J. Biol. Chem. 272, 14,057–14,061.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Si, X., Rahmani, M., Yuan, J., Luo, H. (2005). Detection of Cardiac Signaling in the Injured and Hypertrophied Heart. In: Sun, Z. (eds) Molecular Cardiology. Methods in Molecular Medicine™, vol 112. Humana Press. https://doi.org/10.1007/978-1-59259-879-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-879-3_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-363-3

  • Online ISBN: 978-1-59259-879-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics