Skip to main content

Pathways to Myocardial Hypertrophy

  • Chapter
  • First Online:
Introduction to Translational Cardiovascular Research

Abstract

Pathological cardiac hypertrophy occurs as a consequence of adaptive responses to pressure or volume overload, mutations in sarcomeric (or other) proteins, or loss of contractile mass from prior infarction. While initially compensatory, over time when the heart can no longer meet with the increased metabolic demands of the mechanical work load imposed on the heart, dilation and heart failure ensue. Several signaling pathways are critically important in mediating myocardial hypertrophy, including the G-protein coupled receptor, the calcineurin/NFAT, MAPK, and the PI3K/AKT/mTOR signaling pathways. Importantly, these signaling pathways also control molecular processes, such as cell proliferation, differentiation, survival, migration and other functions of the cell. In addition, the heart is comprised of several cell lineages make up the heart, including cardiomyocytes, fibroblasts, endothelial cells, and vascular smooth muscle cells, each integrally involved in modulating the signaling events that promote the hypertrophic growth of the heart. In this chapter we discuss these molecular pathways and how the aberrant regulation of initially compensatory responses becomes pathological. We will also discuss potential therapeutic targets for hypertrophic cardiomyopathy and heart failure, with a focus on treating this devastating worldwide disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACEIs:

Angiotensin-converting-enzyme inhibitors

AngII:

Angiotensin II

ATP:

Adenosine triphosphate

ATR:

Angiotensin receptor

b-FGF:

basic fibroblast growth factor

C:

Adenylyl cyclase

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

cAMP:

Cyclic adenosine 3′ 5′ monophosphate

CICR:

Calcium-induced Calcium Release

CMs:

Cardiomyocytes

CsA:

Cyclosporine A

ECM:

Extracellular matrix

ECs:

Endothelial cells

ERK:

Extracellular regulated kinase

G protein:

Guanosine triphosphate binding protein

G-protein:

GTP-binding protein

GSK3β:

Glycogen synthase kinase 3-β

HCM:

Hypertrophic Cardiomyopathy

HDACs:

Histone deacetylases

HF:

Heart Failure

IGF-1:

Insulin-like growth factor-1

JNK:

Jun N-terminal kinase

LTCC:

Long-type Calcium Channel

LV:

Left ventricular

MAPK:

Mitogen activated protein kinase

MI:

Myocardial infarction

mTOR:

Mammalian target of Rapamycin

Na+ :

Sodium irons

NFAT:

Nuclear factor for activation of T cells

NO:

Nitric Oxide

PI3K:

xPhosphatidylinositol 3′ kinase

PKC:

Protein kinase C

PLN:

Phospholamban

PTEN:

Phosphatase and tensin homolog deleted on chromosome ten

RAS:

Renin–angiotensin system

RyR:

Ryanodone receptor

SR:

Sarcoplasmic reticulum

STAT:

Signal transducer and activators of transcription

TGFβ:

Transforming growth factor-β

T-tubule:

Transverse tubule2

VEGF:

Vascular endothelial growth factor

VSMCs:

Vascular smooth muscle cells

α-AR:

Alpha adrenergic receptor

β1AR:

Beta 1adrenergic receptor

βAR:

Beta adrenergic receptor

βMHC:

Beta myosin heavy chain

References

  1. Rapila R, Korhonen T, Tavi P. Excitation-contraction coupling of the mouse embryonic cardiomyocyte. J Gen Physiol. 2008;132:397–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bootman MD, Higazi DR, Coombes S, Roderick HL. Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci. 2006;119:3915–25.

    CAS  PubMed  Google Scholar 

  3. McDowell SA, McCall E, Matter WF, Estridge TB, Vlahos CJ. Phosphoinositide 3-kinase regulates excitation-contraction coupling in neonatal cardiomyocytes. Am J Physiol Heart Circ Physiol. 2004;286:H796–805.

    CAS  PubMed  Google Scholar 

  4. Kontaridis MI, Geladari EV, Geladari CV. Role of the shp2 protein tyrosine phosphatase in cardiac metabolism. In: Bence KK, editor. Protein tyrosine phosphatase control of metabolism. London: Springer; 2013. p. 147–67.

    Google Scholar 

  5. Levy D, Labib SB, Anderson KM, Christiansen JC, Kannel WB, Castelli WP. Determinants of sensitivity and specificity of electrocardiographic criteria for left ventricular hypertrophy. Circulation. 1990;81:815–20.

    CAS  PubMed  Google Scholar 

  6. Badeer HS. Biological significance of cardiac hypertrophy. Am J Cardiol. 1964;14:133–8.

    CAS  PubMed  Google Scholar 

  7. Mihl C, Dassen WR, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J. 2008;16:129–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. van Nierop BJ, van Assen HC, van Deel ED, Niesen LB, Duncker DJ, Strijkers GJ, et al. Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI. PLoS One. 2013;8:e55424.

    PubMed Central  PubMed  Google Scholar 

  10. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999;341:1276–83.

    CAS  PubMed  Google Scholar 

  11. Harvey PA, Leinwand LA. The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol. 2011;194:355–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287:1308–20.

    PubMed  Google Scholar 

  13. Arad M, Penas-Lado M, Monserrat L, Maron BJ, Sherrid M, Ho CY, et al. Gene mutations in apical hypertrophic cardiomyopathy. Circulation. 2005;112:2805–11.

    CAS  PubMed  Google Scholar 

  14. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79.

    CAS  PubMed  Google Scholar 

  15. van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest. 2013;123:37–45.

    PubMed Central  PubMed  Google Scholar 

  16. Muslin AJ. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond). 2008;115:203–18.

    CAS  Google Scholar 

  17. Wilkins BJ, Molkentin JD. Calcineurin and cardiac hypertrophy: where have we been? where are we going? J Physiol. 2002;541:1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Anderson ME, Brown JH, Bers DM. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51:468–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Ashrafian H, Redwood C, Blair E, Watkins H. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet. 2003;19:263–8.

    CAS  PubMed  Google Scholar 

  20. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schioth HB. Comprehensive repertoire and phylogenetic analysis of the g protein-coupled receptors in human and mouse. Genomics. 2006;88:263–73.

    CAS  PubMed  Google Scholar 

  21. Wettschureck N, Offermanns S. Mammalian g proteins and their cell type specific functions. Physiol Rev. 2005;85:1159–204.

    CAS  PubMed  Google Scholar 

  22. Hamm HE. The many faces of g protein signaling. J Biol Chem. 1998;273:669–72.

    CAS  PubMed  Google Scholar 

  23. Clapham DE, Neer EJ. New roles for g-protein beta gamma-dimers in transmembrane signalling. Nature. 1993;365:403–6.

    CAS  PubMed  Google Scholar 

  24. Kobilka BK. G protein coupled receptor structure and activation. Biochim Biophys Acta. 2007;1768:794–807.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Salazar NC, Chen J, Rockman HA. Cardiac gpcrs: Gpcr signaling in healthy and failing hearts. Biochim Biophys Acta. 2007;1768:1006–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Madamanchi A. Beta-adrenergic receptor signaling in cardiac function and heart failure. McGill J Med. 2007;10:99–104.

    PubMed Central  PubMed  Google Scholar 

  27. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415:206–12.

    CAS  PubMed  Google Scholar 

  28. Xiang Y, Kobilka BK. Myocyte adrenoceptor signaling pathways. Science. 2003;300:1530–2.

    CAS  PubMed  Google Scholar 

  29. Mauban JR, O’Donnell M, Warrier S, Manni S, Bond M. Akap-scaffolding proteins and regulation of cardiac physiology. Physiology (Bethesda). 2009;24:78–87.

    CAS  Google Scholar 

  30. Tilley DG. G protein-dependent and g protein-independent signaling pathways and their impact on cardiac function. Circ Res. 2011;109:217–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Yoshida H, Kakuchi J, Yoshikawa N, Saruta T, Inagami T, Phillips 3rd JA, Ichikawa I. Angiotensin ii type 1 receptor gene abnormality in a patient with Bartter’s syndrome. Kidney Int. 1994;46:1505–9.

    CAS  PubMed  Google Scholar 

  32. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin ii mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993;75:977–84.

    CAS  PubMed  Google Scholar 

  33. Nicol RL, Frey N, Olson EN. From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease. Annu Rev Genomics Hum Genet. 2000;1:179–223.

    CAS  PubMed  Google Scholar 

  34. Feuerstein GZ, Rozanski D. G proteins and heart failure: is galphaq a novel target for heart failure? Circ Res. 2000;87:1085–6.

    CAS  PubMed  Google Scholar 

  35. Mishra S, Ling H, Grimm M, Zhang T, Bers DM, Brown JH. Cardiac hypertrophy and heart failure development through gq and cam kinase ii signaling. J Cardiovasc Pharmacol. 2010;56:598–603.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Liggett SB, Dorn 2nd GW. Transgenic galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci U S A. 1997;94:8121–6.

    PubMed Central  PubMed  Google Scholar 

  37. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin ii type i receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A. 2000;97:931–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Offermanns S, Zhao LP, Gohla A, Sarosi I, Simon MI, Wilkie TM. Embryonic cardiomyocyte hypoplasia and craniofacial defects in g alpha q/g alpha 11-mutant mice. EMBO J. 1998;17:4304–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, et al. Enhanced galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci U S A. 1998;95:10140–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Chrysant SG. Current status of dual renin angiotensin aldosterone system blockade for the treatment of cardiovascular diseases. Am J Cardiol. 2010;105: 849–52.

    CAS  PubMed  Google Scholar 

  41. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:145–53.

    CAS  PubMed  Google Scholar 

  42. Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH. G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem. 2004;92:949–66.

    CAS  PubMed  Google Scholar 

  43. Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, et al. Direct stimulation of the guanine nucleotide exchange activity of p115 rhogef by galpha13. Science. 1998;280:2112–4.

    CAS  PubMed  Google Scholar 

  44. Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, et al. P115 rhogef, a gtpase activating protein for galpha12 and galpha13. Science. 1998;280:2109–11.

    CAS  PubMed  Google Scholar 

  45. Maruyama Y, Nishida M, Sugimoto Y, Tanabe S, Turner JH, Kozasa T, et al. Galpha(12/13) mediates alpha(1)-adrenergic receptor-induced cardiac hypertrophy. Circ Res. 2002;91:961–9.

    CAS  PubMed  Google Scholar 

  46. Arai K, Maruyama Y, Nishida M, Tanabe S, Takagahara S, Kozasa T, et al. Differential requirement of g alpha12, g alpha13, g alphaq, and g beta gamma for endothelin-1-induced c-jun nh2-terminal kinase and extracellular signal-regulated kinase activation. Mol Pharmacol. 2003;63:478–88.

    CAS  PubMed  Google Scholar 

  47. Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ. The role of sequestration in g protein-coupled receptor resensitization. Regulation of beta2-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem. 1997;272:5–8.

    CAS  PubMed  Google Scholar 

  48. Penela P, Murga C, Ribas C, Tutor AS, Peregrin S, Mayor Jr F. Mechanisms of regulation of g protein-coupled receptor kinases (grks) and cardiovascular disease. Cardiovasc Res. 2006;69:46–56.

    CAS  PubMed  Google Scholar 

  49. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. Association of beta-arrestin with g protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem. 1999;274:32248–57.

    CAS  PubMed  Google Scholar 

  50. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of beta-arrestin with the ap-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem. 2000;275:23120–6.

    CAS  PubMed  Google Scholar 

  51. Penela P, Ribas C, Mayor Jr F. Mechanisms of regulation of the expression and function of g protein-coupled receptor kinases. Cell Signal. 2003;15:973–81.

    CAS  PubMed  Google Scholar 

  52. Metrich M, Berthouze M, Morel E, Crozatier B, Gomez AM, Lezoualc’h F. Role of the camp-binding protein epac in cardiovascular physiology and pathophysiology. Pflugers Arch. 2010;459:535–46.

    CAS  PubMed  Google Scholar 

  53. Anthony DF, Sin YY, Vadrevu S, Advant N, Day JP, Byrne AM, et al. Beta-arrestin 1 inhibits the gtpase-activating protein function of arhgap21, promoting activation of rhoa following angiotensin ii type 1a receptor stimulation. Mol Cell Biol. 2011;31:1066–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, et al. Crystal structures of human calcineurin and the human fkbp12-fk506-calcineurin complex. Nature. 1995;378:641–4.

    CAS  PubMed  Google Scholar 

  55. Olson EN, Williams RS. Calcineurin signaling and muscle remodeling. Cell. 2000;101:689–92.

    CAS  PubMed  Google Scholar 

  56. Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell. 1999;96:611–4.

    CAS  PubMed  Google Scholar 

  57. Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, et al. Calcineurin/nfat coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2004;94:110–8.

    CAS  PubMed  Google Scholar 

  58. Molkentin JD. Calcineurin-nfat signaling regulates the cardiac hypertrophic response in coordination with the mapks. Cardiovasc Res. 2004;63:467–75.

    CAS  PubMed  Google Scholar 

  59. Yamazaki T, Yazaki Y. Is there major involvement of the renin-angiotensin system in cardiac hypertrophy? Circ Res. 1997;81:639–42.

    CAS  PubMed  Google Scholar 

  60. Lai MM, Burnett PE, Wolosker H, Blackshaw S, Snyder SH. Cain, a novel physiologic protein inhibitor of calcineurin. J Biol Chem. 1998;273:18325–31.

    CAS  PubMed  Google Scholar 

  61. Sun L, Youn HD, Loh C, Stolow M, He W, Liu JO. Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity. 1998;8:703–11.

    CAS  PubMed  Google Scholar 

  62. Coghlan VM, Perrino BA, Howard M, Langeberg LK, Hicks JB, Gallatin WM, Scott JD. Association of protein kinase A and protein phosphatase 2b with a common anchoring protein. Science. 1995;267:108–11.

    CAS  PubMed  Google Scholar 

  63. De Windt LJ, Lim HW, Bueno OF, Liang Q, Delling U, Braz JC, et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2001;98:3322–7.

    PubMed Central  PubMed  Google Scholar 

  64. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiol Rev. 2010;90:1507–46.

    CAS  PubMed  Google Scholar 

  65. Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, et al. The in vivo role of p38 map kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci U S A. 2001;98:12283–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-jun nh2-terminal kinase in ventricular muscle cells. J Biol Chem. 1998;273:5423–6.

    CAS  PubMed  Google Scholar 

  67. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, et al. The mek1-erk1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 2000;19:6341–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 2001;20:2757–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    CAS  PubMed  Google Scholar 

  70. Schluter KD, Goldberg Y, Taimor G, Schafer M, Piper HM. Role of phosphatidylinositol 3-kinase activation in the hypertrophic growth of adult ventricular cardiomyocytes. Cardiovasc Res. 1998;40:174–81.

    CAS  PubMed  Google Scholar 

  71. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through g(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res. 2000;87: 1172–9.

    CAS  PubMed  Google Scholar 

  72. Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000;19:2537–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Oudit GY, Kassiri Z, Zhou J, Liu QC, Liu PP, Backx PH, et al. Loss of pten attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc Res. 2008;78:505–14.

    CAS  PubMed  Google Scholar 

  74. Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, et al. Akt/protein kinase b promotes organ growth in transgenic mice. Mol Cell Biol. 2002;22:2799–809.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005;115:2108–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol. 2013;14:38–48.

    CAS  PubMed  Google Scholar 

  77. Sugden PH, Fuller SJ, Weiss SC, Clerk A. Glycogen synthase kinase 3 (gsk3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol. 2008;153 Suppl 1:S137–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Wullschleger S, Loewith R, Hall MN. Tor signaling in growth and metabolism. Cell. 2006;124:471–84.

    CAS  PubMed  Google Scholar 

  79. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mtor and its downstream targets S6K1 and 4EBP1/eif4e. Genes Dev. 2002;16:1472–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Sadoshima J, Izumo S. Rapamycin selectively inhibits angiotensin ii-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kd s6 kinase in angiotensin ii-induced cardiac hypertrophy. Circ Res. 1995;77:1040–52.

    CAS  PubMed  Google Scholar 

  81. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.

    CAS  PubMed  Google Scholar 

  82. Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol. 2005;6:439–48.

    CAS  PubMed  Google Scholar 

  83. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mtor induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet. 2004;36:585–95.

    CAS  PubMed  Google Scholar 

  84. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100:914–22.

    CAS  PubMed  Google Scholar 

  85. Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107:984–91.

    PubMed  Google Scholar 

  86. Wang ZV, Ferdous A, Hill JA. Cardiomyocyte autophagy: metabolic profit and loss. Heart Fail Rev. 2013;18:585–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Purdham DM, Zou MX, Rajapurohitam V, Karmazyn M. Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol. 2004;287:H2877–84.

    CAS  PubMed  Google Scholar 

  88. Nickola MW, Wold LE, Colligan PB, Wang GJ, Samson WK, Ren J. Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO. Hypertension. 2000;36:501–5.

    CAS  PubMed  Google Scholar 

  89. Rajapurohitam V, Gan XT, Kirshenbaum LA, Karmazyn M. The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes. Circ Res. 2003;93:277–9.

    CAS  PubMed  Google Scholar 

  90. Tritos NA, Manning WJ, Danias PG. Role of leptin in the development of cardiac hypertrophy in experimental animals and humans. Circulation. 2004;109:e67; author reply e67.

    PubMed  Google Scholar 

  91. Banks AS, Davis SM, Bates SH, Myers Jr MG. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000;275:14563–72.

    CAS  PubMed  Google Scholar 

  92. Ghilardi N, Skoda RC. The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line. Mol Endocrinol. 1997;11:393–9.

    CAS  PubMed  Google Scholar 

  93. Vecchione C, Maffei A, Colella S, Aretini A, Poulet R, Frati G, et al. Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway. Diabetes. 2002;51:168–73.

    CAS  PubMed  Google Scholar 

  94. Zeidan A, Purdham DM, Rajapurohitam V, Javadov S, Chakrabarti S, Karmazyn M. Leptin induces vascular smooth muscle cell hypertrophy through angiotensin II- and endothelin-1-dependent mechanisms and mediates stretch-induced hypertrophy. J Pharmacol Exp Ther. 2005;315:1075–84.

    CAS  PubMed  Google Scholar 

  95. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell. 2009;16:233–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120:254–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Vivar R, Humeres C, Varela M, Ayala P, Guzman N, Olmedo I, et al. Cardiac fibroblast death by ischemia/reperfusion is partially inhibited by IGF-1 through both PI3K/Akt and MEK-ERK pathways. Exp Mol Pathol. 2012;93:1–7.

    CAS  PubMed  Google Scholar 

  98. Eghbali M. Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol. 1992;87 Suppl 2:183–9.

    CAS  PubMed  Google Scholar 

  99. Fan D, Takawale A, Lee J, Kassiri Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012;5:15.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35:1493–501.

    CAS  PubMed  Google Scholar 

  101. Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, et al. Overexpression of transforming growth factor-beta1 and insulin-like growth factor-i in patients with idiopathic hypertrophic cardiomyopathy. Circulation. 1997;96:874–81.

    CAS  PubMed  Google Scholar 

  102. Fielitz J, Hein S, Mitrovic V, Pregla R, Zurbrugg HR, Warnecke C, et al. Activation of the cardiac renin-angiotensin system and increased myocardial collagen expression in human aortic valve disease. J Am Coll Cardiol. 2001;37:1443–9.

    CAS  PubMed  Google Scholar 

  103. Villar AV, Cobo M, Llano M, Montalvo C, Gonzalez-Vilchez F, Martin-Duran R, et al. Plasma levels of transforming growth factor-beta1 reflect left ventricular remodeling in aortic stenosis. PLoS One. 2009;4:e8476.

    PubMed Central  PubMed  Google Scholar 

  104. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (tgf)-beta signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51:600–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Brooks WW, Conrad CH. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol. 2000;32:187–95.

    CAS  PubMed  Google Scholar 

  106. Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res. 2000;46: 264–8.

    CAS  PubMed  Google Scholar 

  107. Campbell SE, Katwa LC. Angiotensin ii stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol. 1997;29:1947–58.

    CAS  PubMed  Google Scholar 

  108. Rosenkranz S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004;63:423–32.

    CAS  PubMed  Google Scholar 

  109. Murphy JF, Fitzgerald DJ. Vascular endothelial growth factor induces cyclooxygenase-dependent proliferation of endothelial cells via the VEGF-2 receptor. FASEB J. 2001;15:1667–9.

    CAS  PubMed  Google Scholar 

  110. Brutsaert DL. Cardiac endothelial-myocardial signaling: Its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83:59–115.

    CAS  PubMed  Google Scholar 

  111. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem. 1996;271:3221–8.

    CAS  PubMed  Google Scholar 

  112. Bank AJ, Lee PC, Kubo SH. Endothelial dysfunction in patients with heart failure: relationship to disease severity. J Card Fail. 2000;6:29–36.

    CAS  PubMed  Google Scholar 

  113. Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15:100–8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Irene Kontaridis PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kontaridis, M.I., Geladari, E.V., Geladari, C.V. (2015). Pathways to Myocardial Hypertrophy. In: Cokkinos, D. (eds) Introduction to Translational Cardiovascular Research. Springer, Cham. https://doi.org/10.1007/978-3-319-08798-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08798-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08797-9

  • Online ISBN: 978-3-319-08798-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics