Skip to main content

Human Tumor Xenograft Models in NCI Drug Development

  • Chapter
Anticancer Drug Development Guide

Abstract

The methods used by the National Cancer Institute (NCI) for in vivo preclinical development of anticancer drugs were described in detail in the first edition of this book (1). In addition, a series of review articles have charted the evolution of the overall NCI drug discovery process, which began in 1955 (2–12). Although the methodologies associated with xenograft model testing have remained fundamentally the same, during the past 10 yr a series of improvements to preclinical drug testing to expedite in vivo drug development have been made that now precede the employment of xenograft models in the in vivo drug development process. These specialized assays are described in Chapter 8. For the sake of completeness, the present chapter provides (1) a brief history of the in vivo screens used by the NCI, (2) a description of the human tumor xenograft systems that are employed in preclinical drug development, and (3) a discussion of how these xenograft models are employed for both initial efficacy testing as well as detailed drug evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grever MR, Schepartz SA, Chabner BA. The National Cancer Institute: cancer drug discovery and development program. Semin Oncol 1992; 19: 622–638.

    PubMed  CAS  Google Scholar 

  2. Zubrod CG, Schepartz S, Leiter J, Endicott KM, Carrese LM, Baker CG. The chemotherapy program of the National Cancer Institute: history, analysis and plans. Cancer ChemotherRep 1966; 50: 349–540.

    Google Scholar 

  3. Goldin A, Schepartz SA, Venditti JM, DeVita VT Jr. Historical development and current strategy of the National Cancer Institute Drug Development Program. In: DeVita VT Jr, Busch H, eds. Methods in Cancer Research, vol XVI. New York: Academic, 1979: 165–245.

    Google Scholar 

  4. DeVita VT Jr, Goldin A, Oliverio VT, et al. The drug development and clinical trials programs of the Division of Cancer Treatment, National Cancer Institute. Cancer Clin Trials 1979; 2: 195–216.

    Google Scholar 

  5. Goldin A, Venditti JM. The new NCI screen and its implications for clinical evaluation. In: Carter SK, Sakurai Y, eds. Recent Results in Cancer Research, vol 70. Berlin: Springer-Verlag. 1980: 5–20.

    Google Scholar 

  6. Venditti JM. Preclinical drug development: rationale and methods. Semin Oncol 1981; 8: 349–361.

    PubMed  CAS  Google Scholar 

  7. Frei E. The national chemotherapy program. Science (Wash DC) 1982; 217: 600–606.

    Article  Google Scholar 

  8. Venditti JM. The National Cancer Institute antitumor drug discovery program, current and future perspectives: a commentary. Cancer Treat Rep 1983; 67: 767–772.

    PubMed  CAS  Google Scholar 

  9. Driscoll J. The preclinical new drug research program of the National Cancer Institute. Cancer Treat Rep 1984; 68:63–76.

    Google Scholar 

  10. Goldin A. Screening at the National Cancer Institute: basic concepts. In: Hellman K, Carter SK, eds. Fundamentals of Cancer Chemotherapy. New York: McGraw-Hill. 1987:141–149.

    Google Scholar 

  11. Suffness M, Newman DJ, Snader K. Discovery and development of antineoplastic agents from natural sources. In: Scheuer P, ed. Bioorganic Marine Chemistry vol 3 Berlin: Springer-Verlag. 1989:131–168.

    Google Scholar 

  12. Boyd MR. Status of the NCI preclinical antitumor drug discovery screen. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology, Updates, vol 3. Philadelphia: Lippincott. 1989: 1–12.

    Google Scholar 

  13. Gellhorn A, Hirschberg E. Investigation of diverse systems for cancer chemotherapy screening. Cancer Res 1955; 15 (suppl 3):1–125.

    Google Scholar 

  14. Venditti JM, Wesley RA, Plowman J. Current NCI preclinical antitumor screening in vivo: results of tumor panel screening, 1976–1982, and future directions. In: Garrattini S, Goldin A, Hawking F, eds. Advances in Pharmacology and Chemotherapy, vol 20. Orlando, FL: Academic. 1984: 1–20.

    Google Scholar 

  15. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumor to “nude” mice. Acta Pathol Microbiol Scand 1969; 77:758–760.

    Google Scholar 

  16. Giovanella BC, Stehlin JS. Heterotransplantation of human malignant tumors in “nude” thymusless mice. I. Breeding and maintenance of “nude” mice. J Natl Cancer Inst 1973; 51: 615–619.

    PubMed  CAS  Google Scholar 

  17. Bogden A, Kelton D, Cobb W, Esber H. A rapid screening method for testing chemotherapeutic agents against human tumor xenografts. In: Houchens D, Ovejera A, eds. Proceedings of the Symposium on the Use of Athymic (nude) Mice in Cancer Research. New York: Gustav Fischer, 1978: 231–250.

    Google Scholar 

  18. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science 1977; 197:893–895.

    Google Scholar 

  19. Kozlowski JM, Fidler IJ, Campbell D, Xu Z, Kaighn ME, Hart IR. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 1984; 44: 3522–3529.

    PubMed  CAS  Google Scholar 

  20. Dykes DJ, Shoemaker RH, Harrison SD, et al. Development and therapeutic response of a spontaneous metastasis model of a human melanoma (LOX) in athymic mice. Proc Am Assoc Cancer Res 1987; 28: 431.

    Google Scholar 

  21. Shoemaker RH, Dykes DJ, Plowman J, et al. Practical spontaneous metastasis model for in vivo therapeutic studies using a human melanoma. Cancer Res 1991; 51: 2837–2841.

    PubMed  CAS  Google Scholar 

  22. Fidler IJ. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 1986; 5: 29–49.

    Article  PubMed  CAS  Google Scholar 

  23. Fidler IJ, Wilmanns C, Staroselsky A, Radinsky R, Dong Z, Fan D. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev 1994; 13: 209–222.

    Article  PubMed  CAS  Google Scholar 

  24. McLemore TL, Liu MC, Blacker PC, et al. A novel intrapulmonary model for the orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res 1987; 47: 5132–5140.

    PubMed  CAS  Google Scholar 

  25. Leone A, Flatow U, VanHoutte K, Steeg PS. Transfection of human nm23-H1 into the human MDAMB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization and enzymatic activity. Oncogene 1993; 8: 2325–2333.

    PubMed  CAS  Google Scholar 

  26. Carter CA, Dykes, DJ. Characterization of tumor growth and drug sensitivity for human prostate tumors implanted orthotopically. Proc Am Assoc Cancer Res 1994; 35: 280.

    Google Scholar 

  27. Hamburger AW, Salmon SE Primary bioassay of human tumor stem cells. Science (Wash DC) 1977; 197: 461–463.

    Article  CAS  Google Scholar 

  28. Salmon SE, Hamburger AW, Soehnlen B, Durie BGM, Alberts DS, Moon TE. Quantitation of differential sensitivity of human tumor stem cells to anticancer drugs. N Engl J Med 1978; 298: 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  29. Taetle R, Koessler AK, Howell SB. In vitro growth and drug sensitivity of tumor colony-forming units from human tumor xenografts. Cancer Res 1981; 41: 1856–1860.

    PubMed  CAS  Google Scholar 

  30. Salmon SE, Trent J, eds. Human Tumor Cloning. New York: Grune & Stratton, 1984.

    Google Scholar 

  31. Shoemaker RH, Wolpert-DeFilippes MK, Kern DH, et al. Application of a human tumor colony forming assay to new drug screening. Cancer Res 1985; 45: 2145–2153.

    PubMed  CAS  Google Scholar 

  32. Dykes DJ, Abbott BJ, Mayo JG, et al. Development of human tumor xenograft models for in vivo evaluation of new antitumor drugs. In: Huber H, Queißer W, eds. Contributions to Oncology, vol 42. Basel: Karger. 1992: 1–12.

    Google Scholar 

  33. Geran RI, Greenberg NH, MacDonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother Rep 1972; 3: 51.

    Google Scholar 

  34. Stinson SF, Alley MC, Koop WC, et al. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res 1992; 12: 1035–1054.

    PubMed  CAS  Google Scholar 

  35. Boxma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301: 527–530.

    Article  Google Scholar 

  36. Fogh J, Fogh JM, Orfeo, T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 1977; 59: 221–225.

    PubMed  CAS  Google Scholar 

  37. Andriole GL, Mule JJ, Hansen DT, Linehan WM, Rosenberg SA. Evidence that lymphokine-activated killer cells and natural killer cells are distinct based on an analysis of congenitally immunodeficient mice. J Immunol 1985; 135: 2911–2913.

    PubMed  CAS  Google Scholar 

  38. Shafle SM, Grantham FH. Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 1981; 67: 51–56.

    Google Scholar 

  39. Engel LW, Young NA, Tralka TS, Lippman ME, O’Brien SJ, Joyce MJ. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res 1978; 38: 3352–3364.

    PubMed  CAS  Google Scholar 

  40. Boyle MJ, Sewell WA, Milliken ST, Cooper DA, Penny R. HIV and malignancy. JAcquirImmune Defic Syndr 1993; suppl 1: S5–9.

    Google Scholar 

  41. Grever MR, Giavazzi R, Anver M, Hollingshead MG, Mayo JG, Malspeis L. An in vivo AIDS-related lymphoma model for assessing chemotherapeutic agents. Proc Am Assoc Cancer Res 1994; 35: 369.

    Google Scholar 

  42. Personal communication: Dr. Ian Magrath, Pediatrics Branch, Division of Cancer Treatment, NCI.

    Google Scholar 

  43. Magrath IT, Pizzo RA, Whang-Peng J, et al. Characterization of lymphoma-derived cell lines: Comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. I. Physical cytogenetic, and growth characteristics. J Natl Cancer Inst 1980; 64: 465–476.

    PubMed  CAS  Google Scholar 

  44. Magrath IT, Freeman CB, Pizzo P, et al. Characterization of lymphoma-derived cell lines: Comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers. J. Natl Cancer Inst 1980; 64: 477–483.

    PubMed  CAS  Google Scholar 

  45. Magrath I, Freeman C, Santaella M, et al.Induction of complement receptor expression in cell lines derived from human undifferentiated lymphomas. II. Characterization of the induced complement receptors and demonstration of the simultaneous induction EBV receptor. J Immunol 1981; 127: 1039–1043.

    PubMed  CAS  Google Scholar 

  46. Benjamin D, Magrath IT, Maguire R, Janus C, Todd HD, Parson RG. Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt’s and non-Burkitt’s type. J Immunol 1982; 129: 1336–1342.

    PubMed  CAS  Google Scholar 

  47. Beckwith M, Urba WJ, Ferris DK, et al. Anti-IgM-mediated growth inhibition of a human B lymphoma cell line is independent of phosphatidylinositol turnover and protein kinase C activation and involves tyrosine phosphorylation. J Immunol 1991; 147: 2411–2418.

    PubMed  CAS  Google Scholar 

  48. Mosier DE, Gulizia RJ, Baird SM, Wilson DB. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    Article  PubMed  CAS  Google Scholar 

  49. Martin DS, Stolfi RL, Sawyer RC. Commentary on “clinical predictivity of transplantable tumor systems in the selection of new drugs for solid tumors: rationale for a three-stage strategy.” Cancer Treat Rep 1984; 68: 1317–1318.

    PubMed  CAS  Google Scholar 

  50. Martin DS, Balis ME, Fisher B, et al. Role of murine tumor models in cancer treatment research. Cancer Res 1986; 46: 2189–2192.

    PubMed  CAS  Google Scholar 

  51. Stolfi RL, Stolfi LM, Sawyer RC, Martin DS. Chemotherapeutic evaluation using clinical criteria in spontaneous, autochthonous murine breast tumors. J Natl Cancer Inst 1988; 80: 52–55.

    Article  PubMed  CAS  Google Scholar 

  52. Sausville EA, Feigal E. Evolving approaches to cancer drug discovery and development at the National Cancer Institute, USA. Ann Oncol 1999; 10: 1287–1291.

    Article  Google Scholar 

  53. Suffness M, Cordell G. Antitumor alkaloids. In: Brossi A, ed. The Alkaloids, vol XXV. New York: Academic. 1985: 1–355.

    Google Scholar 

  54. Rose WC. Taxol: a review of its preclinical in vivo antitumor activity. Anticancer Drugs 1992; 3: 311–321.

    Article  PubMed  CAS  Google Scholar 

  55. Plowman J, Dykes DJ, Waud WR, Harrison SD Jr, Griswold DP Jr. Response of murine tumors and human tumor xenografts to Taxol (NSC 125973) in mice. Proc Am Assoc Cancer Res 1992; 33: 514.

    Google Scholar 

  56. Eiseman JL, Eddington N, Leslie J, et al. Pharmacokinetics and development of a physiologic model of taxol in CD2F1 mice. Proc Am Assoc Cancer Res 1993; 34: 396.

    Google Scholar 

  57. Marcantonio, D, Panasci, LC, Hollingshead, MG, et al. 2-Chloroethyl-3-sarcosinamide-l-nitrosourea, a novel chloroethylnitrosourea analogue with enhanced antitumor activity against human glioma xenografts. Cancer Res 1997; 57: 3895–3898.

    PubMed  CAS  Google Scholar 

  58. Tomaszewski JE, Donohue SJ, Brown AP, et al. Preclinical efficacy and toxicity of (2-chloroethyl)-3sarcosinamide-l-nitrosourea (SarCNU, NSC 364432). Ann Oncol 1998; 9 (suppl. 2): 202.

    Google Scholar 

  59. Mayo JG, Laster WR Jr, Andrews CM, Schabel FM Jr. Success and failure in the treatment of solid tumors. III. “Cure” of metastatic Lewis lung carcinoma with methyl-CCNU (NSC-95441) and surgery-chemotherapy. Cancer Chemother Rep 1972; 56: 183–95.

    PubMed  CAS  Google Scholar 

  60. Bertalanffy FD, Gibson MH. The in vivo effects of arabinosylcytosine on the cell proliferation of murine B16 melanoma and Ehrlich ascites tumor. Cancer Res 1971; 31: 66–71.

    CAS  Google Scholar 

  61. Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 1975; 35: 218–224.

    PubMed  CAS  Google Scholar 

  62. Houchens DP, Ovejera AA, Sheridan MA, Johnson RK, Bogden AE, Neil GL. Therapy for mouse tumors and human tumor xenografts with the antitumor antibiotic AT-125. Cancer Treat Rep 1979; 63: 473–476.

    PubMed  CAS  Google Scholar 

  63. Bouis D, Hospers GA, Meijer C, Dam W, Peek R, Mulder NH. Effects of the CDT6/ANGX gene on tumour growth in immune competent mice. In Vivo 2003; 17: 157–161

    PubMed  CAS  Google Scholar 

  64. Raso E, Paku S, Kopper L, Timar J. Trace elements improve survival of DTIC-treated mice with overt liver metastases of Lewis lung carcinoma. Pathol Oncol Res 2003; 9: 96–99.

    Article  PubMed  CAS  Google Scholar 

  65. Ross DT, Scherf U, Eisen MB, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000; 24: 227–235.

    Article  PubMed  CAS  Google Scholar 

  66. Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC. Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 2002; 55: 294–299.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Alley, M.C., Hollingshead, M.G., Dykes, D.J., Waud, W.R. (2004). Human Tumor Xenograft Models in NCI Drug Development. In: Teicher, B.A., Andrews, P.A. (eds) Anticancer Drug Development Guide. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-739-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-739-0_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9841-7

  • Online ISBN: 978-1-59259-739-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics