Skip to main content

Interactions Between Stroma and Epithelium in Breast Cancer

Implications for Tumor Genesis, Growth, and Progression

  • Chapter
Endocrinology of Breast Cancer

Part of the book series: Contemporary Endocrinology ((COE,volume 11))

Abstract

Breast cancers are traditionally considered epithelial malignancies. In reality, breast cancers, like normal breast itself, are complex tissues with many interdependent components. Although it is the epithelial cell from ductal or lobular elements within the breast which undergoes malignant transformation, no breast cancer can grow beyond microscopic size and become clinically significant without a complex and dynamic interaction with the surrounding stroma. Stromal elements, consisting of matrix proteins, fibroblasts, vascular elements, and their myriad cellular products, are critical determinants of the growth and malignant behavior of a breast cancer. Ongoing growth and dissemination of a breast malignancy requires complex, but poorly understood, interactions between these elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sakakura T, Nishizuka Y, Dawe CJ (1979) Capacity of mammary fat pads of adult C3H/HeMs mice to interact morphogenetically with fetal mammary epithelium. J Natl Cancer Inst 63: 733–736.

    PubMed  CAS  Google Scholar 

  2. Sakakura T, Sakagami Y, Nishizuka Y (1979) Persistence of responsiveness to adult mammary gland to induction by embryonic mesenchyme. Dev Biol 72: 201–210.

    Article  PubMed  CAS  Google Scholar 

  3. Streuli CH, Bailey N, Bissel MJ (1991) Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol 115: 1383–1391.

    Article  PubMed  CAS  Google Scholar 

  4. Streuli CH, Bissel MJ (1990) Expression of extracellular matrix components is regulated by substratum. J Cell Biol 110: 1405–1415.

    Article  PubMed  CAS  Google Scholar 

  5. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells [published erratum appears in Proc Natl Acad Sci USA 1993; 90:2556]. Proc Natl Acad Sci USA 89: 9064–9068.

    Article  PubMed  CAS  Google Scholar 

  6. Adams EF, Newton CJ, Braunsberg H, Shaikh N, Ghilchik M, James VHT (1988) Effects of human breast fibroblasts on growth and 1713-estradiol dehydrogenase activity of MCF-7 cells in culture. Breast Cancer Res Treat 11: 165–172.

    Article  PubMed  CAS  Google Scholar 

  7. Ryan MC, On DJ, Horgan K (1993) Fibroblast stimulation of breast cancer cell growth in a serum-free system. Br J Cancer 67: 1268–1273.

    CAS  Google Scholar 

  8. van Roozendaal KEP, Klijn JGM, van Ooijen B, Claassen C, Eggermont AMM, Henzen-Logmans SC, et al. (1996) Differential regulation of breast tumor cell proliferation by stromal fibroblasts of various breast sources. Int J Cancer 65: 120–125.

    Article  PubMed  Google Scholar 

  9. Schor AM, Rushton G, Ferguson JE, Howell A, Redford J, Schor SL (1994) Phenotypic heterogeneity in breast fibroblasts: functional anomaly in fibroblasts from histologically normal tissue adjacent to carcinoma. Int J Cancer 59: 25–32.

    Article  PubMed  CAS  Google Scholar 

  10. Brouty-Boye D, Mainguene C, Magnien V, Israel L, Beaupain R (1994) Fibroblast-mediated differentiation in human breast carcinoma cells (MCF-7) grown as nodules in vitro. Int J Cancer 56: 731–735.

    Article  PubMed  CAS  Google Scholar 

  11. Azzarone B, Mareel M, Billard C, Scemama P, Chaponnier C, Maciera-Coelho A (1984) Abnormal properties of skin fibroblasts from patients with breast cancer. Int J Cancer 33: 759–764.

    Article  PubMed  CAS  Google Scholar 

  12. Durning P, Schor SL, Sellwood RAS. (1984) Fibroblasts from patients with breast cancer show abnormal migratory behaviour in vitro. Lancet 2: 890–892.

    Article  PubMed  CAS  Google Scholar 

  13. Schor SL, Haggie J, Duming P, Howell A, Sellwood RAS, Crowther D (1986) The occurrence of a foetal fibroblast phenotype in breast cancer. Int J Cancer 37: 831–836.

    Article  PubMed  CAS  Google Scholar 

  14. Haggie J, Schor SL, Howell A, Birch JM, Sellwood RAS (1987) Fibroblasts from relatives of hereditary breast cancer display foetal-like behaviour in vitro. Lancet 1: 1455–1457

    Article  PubMed  CAS  Google Scholar 

  15. Wicha MS, Lowrie G, Kohn E, Bagavandoss P, Mahn T (1982) Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci USA 79: 3213–3217.

    Article  PubMed  CAS  Google Scholar 

  16. Bissell MJ, Ram TJ (1989) Regulation of functional cytodifferentiation and histogenesis in mammary epithelial cells: role of the extracellular matrix. Environ Health Perspect 80: 61–70.

    Article  PubMed  CAS  Google Scholar 

  17. Laiho M, Keski-Oja J (1989) Growth factors in the regulation of pericellular proteolysis: a review. Cancer Res 49: 2533–2553.

    PubMed  CAS  Google Scholar 

  18. Khokha R, Denhardt DT (1989) Matrix metalloproteinases and tissue inhibitor of metalloproteinases: a review of their role in tumorigenesis and tissue invasion. Invasion Metas 9: 391–405.

    CAS  Google Scholar 

  19. Mira-y-Lopz R, Ossowski L (1987) Hormonal modulation of plasminogen activator: an approach to the prediction of human breast tumor responsiveness. Cancer Res 47: 3558–3564.

    Google Scholar 

  20. Duffy MJ, O’Grady P, Simon J, Rose M, Lijnen HR (1986) Tissue-type plasminogen activator in breast cancer: relationship with estradiol and progesterone receptors. J Natl Cancer Inst 77: 621–623.

    PubMed  CAS  Google Scholar 

  21. Duffy MJ, Reilly D, O’Sullivan C, O’Higgans N, Fennelly JJ, Andreasen P (1990) Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res 50: 6827–6829.

    PubMed  CAS  Google Scholar 

  22. Nielsen BS Sehested M, Timshel S, Pyke C, Dano K (1996) Messenger RNA for urokinase-plasminogen activator is expressed in myofibroblasts adjacent to cancer cells in human breast cancer. Lab Invest 74: 168–177.

    PubMed  Google Scholar 

  23. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, et al. (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348: 699–704.

    Article  PubMed  CAS  Google Scholar 

  24. Cullen KJ, Smith HS, Hill S, Rosen N, Lippman ME (1991) Growth factor messenger RNA expression by human breast fibroblasts from benign and malignant lesions. Cancer Res 51: 4978–4985.

    PubMed  CAS  Google Scholar 

  25. Singer C, Rasmussen A, Smith HS, Lippman ME, Lynch HT, Cullen KJ (1995) Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: evidence for paracrine function. Cancer Res 55: 2448–2454.

    PubMed  CAS  Google Scholar 

  26. Giani C, Cullen KJ, Campani D, Rasmussen A (1996) IGF-II mRNA and protein are expressed in the stroma of invasive breast cancers: an in situ hybridization and immunohistochemistry study. Breast Cancer Res Treat 41: 43–50.

    Article  PubMed  CAS  Google Scholar 

  27. Singer C, Rasmussen A, Lippman ME, Cullen KJ (1997) Coexpression of stromelysin-3 and insulin-like growth factor II in tumors of ectodermal, mesodermal, and endodermal origin: indicator of a fetal cell phenotype. J Clin Endocrinol Metab 82: 1917–1922.

    Article  PubMed  CAS  Google Scholar 

  28. Zhuang Z, Merino MJ, Chuaqui R, Liotta LA, Emmert-Buck MR (1995) Identical allelic loss on chromosome 11g13 in microdissected in situ and invasive human breast cancer. Cancer Res 55: 467–471.

    PubMed  CAS  Google Scholar 

  29. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE (1993) Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci USA 90: 999–1003

    Article  PubMed  CAS  Google Scholar 

  30. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95: 859–873.

    Google Scholar 

  31. Manni A, Badger B, Wei L, Zaenglein A, Grove R, Khin S, et al. (1994) Hormonal regulation of insulin-like growth factor II and insulin-like growth factor binding protein expression by breast cancer cells in vivo: evidence for stromal epithelial interactions. Cancer Res 54: 2934–2942.

    PubMed  CAS  Google Scholar 

  32. Lalande M (1997) Parental imprinting and human disease. Annu Rev Genet 30: 173–195.

    Article  Google Scholar 

  33. Razin A, Cedar H (1994) DNA methylation and genomic imprinting. Cell 77: 473–476.

    Article  PubMed  CAS  Google Scholar 

  34. Li E, Beard C, Jaenisch R (1993) Role of DNA methylation in genomic imprinting. Nature 366: 362–365.

    Article  PubMed  CAS  Google Scholar 

  35. Eden S, Cedar H (1995) Action at a distance. [News and Views]. Nature 375: 16–17.

    Article  PubMed  CAS  Google Scholar 

  36. Issa JP, Vertino PM, Boehm CD, Newsham IF, Baylin SB (1996) Switch from monoallelic to biallelic human IGF-II promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci USA 93: 11757–11762.

    Article  PubMed  CAS  Google Scholar 

  37. Vu TH, Hoffman AR (1994) Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature 371: 714–715.

    Article  PubMed  CAS  Google Scholar 

  38. Leighton PA, Ingram RS, Eggenschwiler, J, Efstratiadis A, Tilghman, SM (1995) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375: 34–39: 1995.

    Google Scholar 

  39. Cui H, Hedborg F, Liangmei H, Nordenskjold A, Sandstedt B, Pfeifer-Ohlosson, S, et al. (1997) Inactivation of H19, an imprinted and putative tumor repressor gene, is a preneoplastic event during Wilms’ tumorigenesis. Cancer Res 57: 4469–4473.

    PubMed  CAS  Google Scholar 

  40. Steenman MJC, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP (1994) Loss of imprinting of IGF-II is linked to reduced expression and abnormal methylation of H19 in Wilms’ yumour. Nature Genet 7: 433–439.

    Article  PubMed  CAS  Google Scholar 

  41. Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362: 747–749.

    Article  PubMed  CAS  Google Scholar 

  42. Taniguchi T, Schofield AE, Scarlett JL, Morison IM, Sullivan MJ, Reeve AE (1995) Altered specificity of IGF-II promoter imprinting during fetal development and onset of Wilms’ Tumor. Oncogene 11: 751–756.

    PubMed  CAS  Google Scholar 

  43. Barletta JM, Rainier S, Feinberg AP (1997) Reversal of loss of imprinting in tumor cells by 5-aza-23deoxycytidine. Cancer Res 57: 48–50.

    PubMed  CAS  Google Scholar 

  44. Wu HK, Squire JA, Catzavelos CG, Weksberg R (1997) Relaxation of imprinting of human insulin-like growth factor II gene, IGF-II, in sporadic breast carcinomas. Biochem Biophys Res Commun 235: 123–129.

    Google Scholar 

  45. Yballe CM, Vu TH, Hoffman AR (1996) Imprinting and expression of insulin-like growth factor-II and H19 in normal breast tissue and breast tumor. J Clin Endocrinol Metab 81: 1607–1612.

    Article  PubMed  CAS  Google Scholar 

  46. White MF, Kahn CR (1994) The insulin signaling system. J Biol Chem 269: 1–4.

    PubMed  CAS  Google Scholar 

  47. Singleton JR, Dixit VM, Feldman EL (1996) Type I insulin-like growth factor receptor activation regulates apoptotic proteins. J Biol Chem 271: 31791–31794.

    Article  PubMed  CAS  Google Scholar 

  48. O’Connor R, Kauffmann-Zeh A, Liu Y, Lehar S, Evan GI, Baserga R, Blattler WA (1997) Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol Cell Biol 17: 427–435.

    PubMed  Google Scholar 

  49. Yee D, Cullen KJ, Paik S, Perdue JF, Hampton B, Schwartz A, et al. (1988) Insulin-like growth factor II mRNA expression in human breast cancer; insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res 48: 6691–6696.

    PubMed  CAS  Google Scholar 

  50. Cullen KJ, Yee D, Sly WS, Perdue J, Hampton B, Lippman ME, et al. (1990) Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res 50: 48–53.

    PubMed  CAS  Google Scholar 

  51. Yee D, Brunner N, Rotwein P (1990) A novel insulin-like growth factor I messenger RNA is expressed in normal and tumor cells. Mol Endocrinol 4:1914–1920.

    Google Scholar 

  52. Pekonen F, Partanen S, Makinen T, Rutanen EM (1988) Receptors for epidermal growth factor and insulin-like growth factor I and their relation to steroid receptors in human breast cancer. Cancer Res 48: 1343–1347.

    PubMed  CAS  Google Scholar 

  53. Pollak MN, Huynh HT, Lefebvre SP (1992) Tamoxifen reduces serum insulin-like growth factor I ( IGF-I ). Breast Cancer Res Treat. 22: 91–100.

    Google Scholar 

  54. Cullen KJ, Lippman ME, Chow D, Hill S, Rosen N, Zwiebel JA (1992) Insulin-like growth factor-II overexpression in MCF-7 cells induces phenotypic changes associated with malignant progression. Mol Endocrinol 6: 91–100.

    Article  PubMed  CAS  Google Scholar 

  55. Lee AV, Darbre P, King RJ (1994) Processing of insulin-like growth factor-II ( IGF-II) by human breast cancer cells. Mol Cell Endocrinol 99: 211–220.

    Google Scholar 

  56. Toropainen E, Lipponen P, Syrjänen K (1995) Expression of insulin-like growth factor I (IGF-I) in female breast cancer as related to established prognostic factors and long-term prognosis. Eur J Cancer 31A: 1443–1448: 1995

    Article  Google Scholar 

  57. Bonneterre J, Peyrat JP, Beuscart R, Demaille A (1990) Prognostic significance of insulin-like growth factor 1 receptors in human breast cancer. Cancer Res 50: 6931–6935.

    PubMed  CAS  Google Scholar 

  58. Toropainen EM, Lipponen PK, Syräjnen KJ (1995) Expression of insulin-like growth factor II in female breast cancer as related to established prognostic factors and long-term prognosis. Anticancer Res 15: 2669–2674.

    PubMed  CAS  Google Scholar 

  59. Tandon AK, Clark GM, Chamness GC, Chirgwin JM, McGuire WL (1990) Cathepsin D and prognosis in breast cancer. N Engl J Med 322: 297–302.

    Article  PubMed  CAS  Google Scholar 

  60. Spyratos F, Maudelonde T, Brouillet JP, Brunet M, Defrenne A, Andrieu C, et al. (1989) Cathepsin D: an independent prognostic factor for metastasis of breast cancer. Lancet 2: 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  61. Hoeflich A, Wolf E, Braulke T, Koepf G, Kessler U, Brem G, et al. (1995) Does the overexpression of pro-insulin-like growth factor-II in transfected human embryonic kidney fibroblasts increase the secretion of lysosomal enzymes? Eur J Biochem 232: 172–178.

    Article  PubMed  CAS  Google Scholar 

  62. De Leon D, Terry C, Asmerom Y, Nissley P (1996) Insulin-like growth factor II modulates the routing of cathepsin D in MCF-7 breast cancer cells. Endocrinology 137: 1851–1859.

    Article  PubMed  Google Scholar 

  63. Hankins GR, DeSouza A, Bently R, Patel M, Marks J, Iglehart J, et al. (1996) M6P/IGF2 receptor: a candidate breast tumor suppressor gene. Oncogene 12: 2003–2009.

    PubMed  CAS  Google Scholar 

  64. Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73: 161–195.

    PubMed  CAS  Google Scholar 

  65. Dennis PA, Rifkin DB (1991) Cellular activation of latent transforming growth factor ß requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor. Proc Natl Acad Sci USA 88: 580–584.

    Article  PubMed  CAS  Google Scholar 

  66. Dalai BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143: 381–389.

    Google Scholar 

  67. Holst-Hansen C, Johannessen B, Hoyer-Hansen G, Romer J, Ellis V, Brunner N (1996) Urokinase-type plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin Exp Metast 14: 297–307.

    CAS  Google Scholar 

  68. Arnoletti JP, Albo D, Granick MS, Solomaon MP, Castiglioni A, Rothman VL, et al. (1995) Thrombospondin and transforming growth factor-I3 1 increase expression of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in human MDA-MB-231 breast cancer cells. Cancer 76: 998–1005.

    Article  PubMed  CAS  Google Scholar 

  69. Falcone DJ, McCaffrey TA, Haimovitz-Friedman A, Garcia, M (1993) Transforming growth factor-1 stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor. J Cell Physiol 155: 595–605.

    Article  PubMed  CAS  Google Scholar 

  70. Minniti CP, Kohn EC, Grubb JH, Sly WS, Oh Y, Muller HL, et al. (1992) The insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptor mediates IGF-II-induced motility in human rhabdomyosarcoma cells. J Biol Chem 267:9000–9004..

    Google Scholar 

  71. Nakao-Hayashi J, Ito H, Kanayasu T, Morita I, Murota S (1992) Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells. Atherosclerosis 92: 141–149.

    Article  PubMed  CAS  Google Scholar 

  72. Klemke RL, Yebra M, Bayna EM, Cheresh DA (1994) Receptor tyrosine kinase signaling required for integrin alpha v beta 5—directed cell motility but not adhesion on vitronectin. J Cell Biol 127: 859–866.

    Article  PubMed  CAS  Google Scholar 

  73. Jones JI, Prevette T, Gockerman A, Clemmons DR (1996) Ligand occupancy of the alpha-V-beta3 integrin is necessary for smooth muscle cells to migrate in response to insulin-like growth factor. Proc Natl Acad Sci USA 93: 2482–2487.

    Article  PubMed  CAS  Google Scholar 

  74. Doerr ME, Jones JI (1996) The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J Biol Chem 271: 2443–2447.

    Article  PubMed  CAS  Google Scholar 

  75. Stracke ML, Engel JD, Wilson LW, Rechler MM, Liotta LA, Schiffmann E (1989) The type I insulin-like growth factor receptor is a motility receptor in human melanoma cells. J Biol Chem 264: 2154421549.

    Google Scholar 

  76. Grant MB, Guay C, Marsh R (1990) Insulin-like growth factor I stimulates proliferation, migration, and plasminogen activator release by human retinal pigment epithelial cells. Curr Eye Res 9: 323–335.

    Article  PubMed  CAS  Google Scholar 

  77. Nakao-Hayashi J, Ito H, Kanayasu T, Morita I, Murota S (1992) Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells. Atherosclerosis 92: 141–149.

    Article  PubMed  CAS  Google Scholar 

  78. Roesel JF, Nanney LB (1995) Assessment of differential cytokine effects on angiogenesis using an in vivo model of cutaneous wound repair. J Surg Res 58: 449–459.

    Article  PubMed  CAS  Google Scholar 

  79. Grant MB, Mames RN, Fitzgerald C, Ellis EA, Aboufriekha M, Guy J (1993) Insulin-like growth factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor. Diabetologia 36: 282–291.

    Article  PubMed  CAS  Google Scholar 

  80. Lefaucheur JP, Gjata B, Lafont H, Sebille A (1996) Angiogenic and inflammatory responses following skeletal muscle injury are altered by immune neutralization of endogenous basic fibroblast growth factor, insulin-like growth factor-1 and transforming growth factor-beta 1. J Neuroimmunol 70: 37–44.

    Article  PubMed  CAS  Google Scholar 

  81. Volpert O, Jackson D, Bouck N, Linzer DI (1996) The insulin-like growth factor II/mannose 6-phosphate receptor is required for proliferin-induced angiogenesis. Endocrinology 137: 3871–3876.

    Article  PubMed  CAS  Google Scholar 

  82. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16: 3–34.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cullen, K.J., Kaup, S.S., Rasmussen, A.A. (1999). Interactions Between Stroma and Epithelium in Breast Cancer. In: Manni, A. (eds) Endocrinology of Breast Cancer. Contemporary Endocrinology, vol 11. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-699-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-699-7_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5139-0

  • Online ISBN: 978-1-59259-699-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics