Skip to main content

The Pathophysiology of Alzheimer’s Disease

  • Chapter
Early Diagnosis of Alzheimer’s Disease

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Progress in accurately diagnosing and effectively treating Alzheimer’s disease (AD) must rest on a fundamental understanding of its pathophysiology. The application of molecular genetic, biochemical, and morphological techniques to this disorder during the last two decades has produced a large and complex body of data that is steadily being integrated into a temporal sequence of pathogenetic events. Although our understanding of the mechanism of the disease is still evolving, there is growing agreement among many investigators about the major steps in the cascade that precede the symptoms of the disease. In this chapter, we review the salient features of our current understanding of AD pathophysiology and explore how this new knowledge improves early diagnosis and illuminates the pathway to therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nukina N, Ihara Y. One of the antigenic determinants of paired helical filaments is related to tau protein. J. Biochem. 1986;99:1541–1544.

    PubMed  CAS  Google Scholar 

  2. Kosik KS, Joachim CL, Selkoe DJ. Microtubule-associated protein, tau, is a major antigenic component of paired helical filaments in Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 1986;83:4044–4048.

    Article  PubMed  CAS  Google Scholar 

  3. Grundke-Iqbal I, Iqbal K, Tung Y C, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein T (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. U.S.A. 1986;83:4913–4917.

    Article  PubMed  CAS  Google Scholar 

  4. Kondo J, Honda T, Mori H, Hamada Y, Miura R, Ogawara M, Ihara Y. The carboxyl third of tau is tightly bound to paired helical filaments. Neuron 1988;1:827–834.

    Article  PubMed  CAS  Google Scholar 

  5. Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Rother M, Klug A. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 1988;85:4506–4510.

    Article  PubMed  CAS  Google Scholar 

  6. Lee VM-Y, Balin BJ, Otvos L, Trojanowski JQ. A68. A major subunit of paired helical filaments and derivatized forms of normal tau. Science 1991:251:675–678.

    Article  PubMed  CAS  Google Scholar 

  7. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984:120:885–890.

    Article  PubMed  CAS  Google Scholar 

  8. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 1985;82:4245–4249.

    Article  PubMed  CAS  Google Scholar 

  9. Selkoe DJ, Abraham CR, Podlisny MB, Duffy LK. Isolation of lowmolecularweight proteins from amyloid plaque fibers in Alzheimer’s disease. J. Neurochem. 19R6:146:1 820–1 R34.

    Google Scholar 

  10. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Muller-Hill B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325:733–736.

    Article  PubMed  CAS  Google Scholar 

  11. Kirschner DA, Inouye Y, Duffy LK, Sinclair A, Selkoe DJ. Synthetic ß-peptide of Alzheimer disease forms amyloid-like fibrils in vitro. Proc. Natl. Acad. Sci. U.S.A. 1987;84:6953–6957.

    Article  PubMed  CAS  Google Scholar 

  12. Castano EM, Ghiso J, Prelli F, Gorevic PD, Migheli A, Frangione B. In vitro formation of amyloid fibrils from two synthetic peptides of different lengths homologous to Alzheimer’s disease β-protein. Biochem. Biophys. Res. Commun. 1986;141:782–789.

    Google Scholar 

  13. Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K. Aggregation and secondary structure of synthetic amyloid 13A4 peptides of Alzheimer’s disease. J. Mol. Biol. 1991;218:149–163.

    Article  CAS  Google Scholar 

  14. Barrow CJ, Yasuda A, Kenny PTM, Zagorski MG. Solution conformations and aggregational properties of synthetic amyloid ß-peptides of Alzheimer’s disease. Mol. Biol. 1992;225:1075–1093.

    Article  CAS  Google Scholar 

  15. Jarrett JT, Berger EP, Lansbury Jr, PT. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 1993;32:4693–4697.

    Article  PubMed  CAS  Google Scholar 

  16. Mann DMA. Cerebral amyloidosis, aging and Alzheimer’s disease: a contribution from studies on Down’s syndrome. Neurobiol. Aging 1989;10:397–399.

    Article  PubMed  CAS  Google Scholar 

  17. Iwatsubo T, Mann DM, Odaka A, Suzuki N, Ihara Y. Amyloid ß protein (Aß) deposition: Aß42(43) precedes A1340 in Down syndrome. Ann. Neurol. 1995;37: 294–299.

    Article  PubMed  CAS  Google Scholar 

  18. Lemere CA, Blustzjan JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ. Sequence of deposition of heterogeneous amyloid ß-peptides and Apo E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 1996;3:16–32.

    Article  PubMed  CAS  Google Scholar 

  19. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ. Cleavage of amyloid ß-peptide during constitutive processing of its precursor. Science 1990;248:1122–1124.

    Article  PubMed  CAS  Google Scholar 

  20. Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL. Evidence that 3-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 1990;248:492–495.

    Article  PubMed  CAS  Google Scholar 

  21. Weidemann A, Konig G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K. Identification, biogenesis and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 1989;57:115–126.

    Article  PubMed  CAS  Google Scholar 

  22. Palmert MR, Podlisny MB, Witker DS, Oltersdorf T, Younkin LH, Selkoe DJ, Younkin SG. The β3-amyloid precursor protein of Alzheimer disease has soluble derivatives found in human brain and cerebrospinal fluid. Proc. Natl. Acad. Sci. U.S.A. 1989;86:6338–6342.

    Article  PubMed  CAS  Google Scholar 

  23. Podlisny MB, Mamen AL, Schlossmacher MG, Palmert MR, Younkin SG, Selkoe DJ. Detection of soluble forms of the 13-amyloid precursor protein in human plasma. Biochem. Biophys. Res. Commun. 1990;167:1094–1101.

    Article  PubMed  CAS  Google Scholar 

  24. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJS, Hopkins R, Smith DW, Heavesn RP, Dawson GR, Boyce S, Conner MW, Stevens KA, Slunt HH, Sisodia SS, Chen HY, Van der Ploeg LHT. β3-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 1995;81:525–531.

    Article  PubMed  CAS  Google Scholar 

  25. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ. Amyloid ß-peptide is produced by cultured cells during normal metabolism. Nature 1992;359:322–325.

    Article  PubMed  CAS  Google Scholar 

  26. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher MG, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe DJ, Lieberburg I, Schenk D. Isolation and quantitation of soluble Alzheimer’s 13-peptide from biological fluids. Nature 1992;359:325–327.

    Article  PubMed  CAS  Google Scholar 

  27. Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai X, McKay DM, Tintner R, Frangione B, Younkin SG. Production of the Alzheimer amyloid ß protein by normal proteolytic processing. Science 1992;258:126–129.

    Article  PubMed  CAS  Google Scholar 

  28. Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA. Generation of ß-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. U.S.A. 1993;90:2092–2096.

    Article  PubMed  CAS  Google Scholar 

  29. Kisilevsky R, Benson MD, Frangione B, Gauldie J, Muckle TJ, Young, ID. Amyloid and Amyloidosis 1993. In: Proceedings of the VIIth International Symposium on Amyloidosis, July 11–15, 1993, Kingston, Ontario, Canada (New York, London: Parthenon Publishing).

    Google Scholar 

  30. Selkoe DJ. Physiological production of the amyloid ß-protein and the mechanism of Alzheimer’s disease. Trends Neurosci. 1993;16:403–409.

    Article  PubMed  CAS  Google Scholar 

  31. St. George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D, Growdon J, Bruni A, Foncin J-F, Salmon D, Frommelt P, Amaducci L, Sorbi S, Piacentini S, Stewart GC, Hobbs WJ, Conneally P, Gusella JF. The genetic defect causing familial Alzheimer’s disease maps to chromosome 21. Science 1987;235:885–889.

    Google Scholar 

  32. Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991;349:704–706.

    Article  PubMed  CAS  Google Scholar 

  33. Selkoe DJ. Alzheimer’s disease: genotypes, phenotype, and treatments. Science 1997;275:630–631.

    Article  PubMed  CAS  Google Scholar 

  34. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD. Apolipoprotein E: high-avidity binding to ß-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1993;90:1977–1981.

    Article  PubMed  CAS  Google Scholar 

  35. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MachLachlan DR, Alberts MJ, Hulette C, Crain B, Goldgaber D, Roses AD. Association of apolipoprotein E allele epsilon 4 with lateonset familial and sporadic Alzheimer’s disease. Neurology 1993;43:1467–1472.

    Article  PubMed  CAS  Google Scholar 

  36. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell Jr., PC, Rimmler JB, Locke PA, Conneally PM, Schmader KE, Small GW, Roses AD, Haines JL, Pericak-Vance MA. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer’s disease. Nature Genet. 1994;7:180–184.

    Article  PubMed  CAS  Google Scholar 

  37. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D, Roses AD. Increased amyloid ß-peptide deposition in cerebral cortex as a consequence of apolipoprotein E gentoype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1993;90:9649–9653.

    Article  PubMed  CAS  Google Scholar 

  38. Rebeck GW, Reiter JS, Strickland DK, Hyman BT. Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 1993;11: 575–580.

    Article  PubMed  CAS  Google Scholar 

  39. Hyman BT, West HL, Rebeck GW, Buldyrev SV, Mantegna RN, Ukleja M, Havlin S, Stanley HE. Quantitative analysis of senile plaques in Alzheimer’s disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc. Natl. Acad. Sci. U.S.A. 1995;92:3586–3590.

    Article  PubMed  CAS  Google Scholar 

  40. Polvikoski T, Sulkava R, Haltia M, Kainulainen K, Vuorio A, Verkkoniemi A, Niinisto L, Halonen P, Kontula K. Apolipoprotein E, dementia, and cortical deposition of ß-amyloid protein. N. Engl. J. Med. 1995;333:1242–1247.

    Article  PubMed  CAS  Google Scholar 

  41. Greenberg SM, Rebeck GW, Vonsattel JPG, Gomez-Isla T, Hyman BT. Apolipoprotein E €4 and cerebral hemorrhage associated with amyloid angiopathy. Ann. Neurol. 1995;38:254–259.

    Google Scholar 

  42. Evans KC, Berger EP, Cho C-G, Weisgraber KH, Lansbury Jr, PT. Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1995;92:763–767.

    Article  PubMed  CAS  Google Scholar 

  43. Nathan BP, Bellosta S, Sanan DA, Weisgraber KH, Mahley RW, Pitas RE. Differential effects of apoliprotein E3 and E4 on neuronal growth in vitro. Science 1994;264:850–852.

    Article  PubMed  CAS  Google Scholar 

  44. Roses AD, Einstein G, Gilbert J, Goedert M, Han SH, Huang D, Hulette C, Masliah E, Pericak-Vance MA, Saunders AM, Schmechel DE, Strittmatter WJ, Weisgraber KH, Xi PT. Morphological, biochemical and genetic support for an apolipoprotein E effect on microtubular metabolism. Ann. N.Y Acad. Sci. 1996;777:146–157.

    Article  PubMed  CAS  Google Scholar 

  45. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J-F, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen DA, Roses AD, Fraser PE, Rommens JM, St. George-Hyslop PH. Cloning of a novel gene bearing missense mutations in early onset familial Alzheimer disease. Nature 1995;375:754–760.

    Article  PubMed  CAS  Google Scholar 

  46. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell H, Yu C, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu Y H, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995;269:973–977.

    Article  PubMed  CAS  Google Scholar 

  47. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holamn K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakov I, Cohen D, Lannfelt L, Fraser PE, Rommens JM, St. GeorgeHyslop PH. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995;376:775–778.

    Article  PubMed  CAS  Google Scholar 

  48. Levitan D, Greenwald I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 1995;377:351–354.

    Article  PubMed  CAS  Google Scholar 

  49. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S. Secreted amyloid ß-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med. 1996;2:864–870.

    Article  PubMed  CAS  Google Scholar 

  50. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada C-M, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS. Familial Alzheimer’s disease-linked presenilin 1 variants elevate A31–42/1–40 ratio in vitro and in vivo. Neuron 1996;17:1005–1013.

    Article  PubMed  CAS  Google Scholar 

  51. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenka D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St GeorgeHyslop P, Selkoe DJ. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid ß-protein in both transfected cells and transgenic mice. Nature Med. 1997;3:67–72.

    Article  PubMed  CAS  Google Scholar 

  52. Xia W, Zhang J, Kholodenko D, Citron M, Podlisny MB, Teplow DB, Haass C, Seubert P, Koo EH, Selkoe DJ. Enhanced production and oligomerization of the 42–residue amyloid ß-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J. Biol. Chem. 1997;272:7977–7982.

    Article  CAS  Google Scholar 

  53. Wolfe MS, Xia W, Ostaszewski BH, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and secretase activity. Nature 1999;398:513–517.

    Article  PubMed  CAS  Google Scholar 

  54. Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, Yamaguchi H, Ruiz A, Martinez A, Madrigal L, Hincapie L, Arango L, PC, Anthony DC, Koo EH, Goate AM, Selkoe DJ, Arango V, JC. The E280A presenilin 1 Alzheimer mutation produces increased A1342 deposition and severe cerebellar pathology. Nature Med. 1996;2:1146–1150.

    Article  PubMed  CAS  Google Scholar 

  55. Duff K, Eckman C, Zehr C, Yu X, Prada C-M, Perez-tur J, Hutton M, Buee L, Hairgaya Y, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S. Increased amyloid A1342(43) in brains of mice expressing mutant presenilin 1. Nature 1996;383:710–713.

    Article  PubMed  CAS  Google Scholar 

  56. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina H, Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 1994;13:45–53.

    Article  PubMed  CAS  Google Scholar 

  57. Gearing M, Mori H, Mina SS. Aß-peptide length and apolipoprotein E genotype in Alzheimer’s disease. Ann. Neurol. 1996;39:395–399.

    Article  PubMed  CAS  Google Scholar 

  58. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Can T, Clemens J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, MontoyaZavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J. Alzheimertype neuropathology in transgenic mice overexpressing V717F 13-amyloid precursor protein. Nature 1995;373:523–527.

    Article  PubMed  CAS  Google Scholar 

  59. Hsiao K, Chapman P, Nilsen S, Ekman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative memory deficits, Aß elevation, and amyloid plaques in transgenic mice. Science 1996;274:99–102.

    Article  PubMed  CAS  Google Scholar 

  60. Morris JC, Storandt M, McKeel Jr DW, Rubin EH, Price JL, Grant EA, Berg L. Cerebral amyloid deposition and diffuse plaques in ”normal“ aging: evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 1996;46:707–719.

    Article  PubMed  CAS  Google Scholar 

  61. Querfurth HW, Wijsman EM, St. George-Hyslop PH, Selkoe DJ. ßAPP mRNA transcription is increased in cultured fibroblasts from the familial Alzheimer’s disease-1 family. Mol. Brain Res. 1995;28:319–337.

    Google Scholar 

  62. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F ß-amyloid precursor protein and Alzheimer’s disease. J. Neurosci. 1996;16:5795–5811.

    PubMed  CAS  Google Scholar 

  63. Geula C, Wu C-k, Saroff D, Lorenzo A, Yuan M, Yankner BA. Aging renders the brain vulnerable to amyloid ß-protein neurotoxicity. Nature Med. 1998;4(7):827–831.

    Article  PubMed  CAS  Google Scholar 

  64. Games D, Carr T, Guido T, Khan K, Soriano F, Tan H, McConlogue L, Lieberburg I, Schenk D, Masliah E. Progression of Alzheimer-type neuropathology in PDAPP717v→→F transgenic mice. Soc. Neurosci. Abstr. 1995;21:258.

    Google Scholar 

  65. Moechars D, Dewachter I, Lorent K, Reverse D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 1999;274(10):6483–6492.

    Article  PubMed  CAS  Google Scholar 

  66. Abraham CR, Selkoe DJ, Potter H. Immunochemical identification of the serine protease inhibitor, α<sub>1</sub>-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 1988;52:487–501.

    Article  PubMed  CAS  Google Scholar 

  67. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jacob disease. Brain Res. 1991;541:163–166.

    Article  PubMed  CAS  Google Scholar 

  68. Kalaria RN. Serum amyloid P and related molecules associated with the acutephase response in Alzheimer’s disease. Res. Immunol. 1992;143:637–641.

    Article  PubMed  CAS  Google Scholar 

  69. Snow AD, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassell J, Wight TN. The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease. Am. J. Pathol. 1988;133:456–463.

    PubMed  CAS  Google Scholar 

  70. Eikelenboom P, Stam FC. Immunoglobulins and complement factors in senile plaques: an immunoperoxidase study. Acta Neuropathol. 1982;57:239–242.

    Article  PubMed  CAS  Google Scholar 

  71. Rogers J, Cooper NR, Websger S, Schultz J, McGeer PL, Styren SD, Civin WH, Brachova L, Bradt B, Ward P, Lieberburg I. Complement activation by ß-amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 1992;89:10016–10020.

    Article  PubMed  CAS  Google Scholar 

  72. Goedert M, Trojanowski JQ, Lee VM-Y. (1996). The neurofibrillary pathology of Alzheimer’s disease. In: The Molecular and Genetic Basis of Neurological Disease, 2nd Edition, R.N. Rosenberg, S.B. Prusiner, S. DiMauro and R.L. Barchi, eds. (Boston: Butterworth-Heinemann Publishers), 1996;pp.613–627.

    Google Scholar 

  73. Lee VM-Y. Disruption of the cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol. 1995;5:663–668.

    Article  PubMed  CAS  Google Scholar 

  74. Cummings BJ, Cotman CW. Image analysis of ß-amyloid load in Alzheimer’s disease and relation to dementia severity. Lancet 1995;346:1524–1528.

    Article  PubMed  CAS  Google Scholar 

  75. Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 1999;399(Suppl.24):A23–A31.

    PubMed  CAS  Google Scholar 

  76. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberberg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P. Immunization with amyloid-13 attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173–177.

    Article  PubMed  CAS  Google Scholar 

  77. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 1992;258:304–307.

    Article  PubMed  CAS  Google Scholar 

  78. Hung AY, Haass C, Nitsch RM, Qiu WQ, Citron M, Wurtman RJ, Growdon JH, Selkoe DJ. Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J. Biol. Chem. 1993;268:22959–22962.

    PubMed  CAS  Google Scholar 

  79. Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid ß protein toxicity. Cell 1994;77:817–827.

    Article  PubMed  CAS  Google Scholar 

  80. Ihara Y. Massive somatodendritic sprouting of cortical neurons in Alzheimer’s disease. Brain Res. 1988;459:138–144.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this chapter

Cite this chapter

Selkoe, D.J. (2000). The Pathophysiology of Alzheimer’s Disease. In: Scinto, L.F.M., Daffner, K.R. (eds) Early Diagnosis of Alzheimer’s Disease. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-005-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-005-6_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9601-7

  • Online ISBN: 978-1-59259-005-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics