Skip to main content

QuantStudio 12K Flex OpenArray® System as a Tool for High-Throughput Genotyping and Gene Expression Analysis

  • Protocol
  • First Online:
Quantitative Real-Time PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2065))

Abstract

Real time technology provides great advancements over PCR-based methods for a broad range of applications. With the increased availability of sequencing information, there is a need for the development and application of high-throughput real time PCR genotyping and gene expression methods that significantly broaden the current screening capabilities. Thermo Fisher Scientific (USA) has released a platform (QuantStudio™ 12K Flex system coupled with OpenArray® technology) with key elements required for high-throughput SNP genotyping and gene expression analysis. This allows for a rapid screening of large numbers of TaqMan® assays (up to 256) in many samples (up to 480) per run. This advanced real-time method involves the use of an array composed of 3,000 through-holes running on the QuantStudio™ 12K with OpenArray® block. The aim of this chapter is to outline the OpenArray® approach while providing a comprehensive in-depth review of the scientific literature on this topic. In agreement with a large number of independent studies, we conclude that the use of OpenArray® technology is a rapid and accurate method for high-throughput and large-scale systems biology studies with high specificity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamas A, Franco CM, Regal P et al (2016) High-throughput platforms in real-time PCR and applications. In: Polymerase chain reaction for biomedical applications. InTech, pp 15–38

    Google Scholar 

  2. Stevens J, Heid C, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  PubMed  Google Scholar 

  3. Stevanato P, Broccanello C, Biscarini F et al (2013) High-throughput RAD-SNP genotyping for characterization of sugar beet genotypes. Plant Mol Biol Rep 32:691–696

    Google Scholar 

  4. Stevanato P, Trebbi D, Saccomani M et al (2017) Single nucleotide polymorphism markers linked to root elongation rate in sugar beet. Biol Plantarum 61:48–54

    Article  CAS  Google Scholar 

  5. Broccanello C, Stevanato P, Biscarini F et al (2015) A new polymorphism on chromosome 6 associated with bolting tendency in sugar beet. BMC Genet 16(1)

    Google Scholar 

  6. Biscarini F, Marini S, Stevanato P et al (2015) Developing a parsimonius predictor for binary traits in sugar beet (Beta vulgaris). Mol Breed 35(1)

    Google Scholar 

  7. Biscarini F, Nazzicari N, Broccanello C et al (2016) “Noisy beets”: impact of phenotyping errors on genomic predictions for binary traits in Beta vulgaris. Plant Methods 12:36

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stevanato P, Broccanello C, Moliterni VMC et al (2018) Innovative approaches to evaluate sugar beet responses to changes in sulfate availability. Front Plant Sci 9:14

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barone V, Baglieri A, Stevanato P et al (2017) Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol 30:1061–1071

    Article  Google Scholar 

  10. Muranty H, Troggio M, Sadok IB et al (2015) Accuracy and responses of genomic selection on key traits in apple breeding. Hortic Res 215:60

    Google Scholar 

  11. Trebbi D, Ravi S, Broccanello C et al (2019) Identification and validation of SNP markers linked to seed toxicity in Jatropha curcas L. Scientific reports 9:10220

    Google Scholar 

  12. Ross JP, Mohtashami S, Leveille E et al (2018) Association study of essential tremor genetic loci in Parkinson’s disease. Neurobiol Aging 66:178–e13

    Article  PubMed  Google Scholar 

  13. Denomme GA, Schanen MJ (2015) Mass-scale donor red cell genotyping using real-time array technology. Immunohematology 31:69–74

    PubMed  Google Scholar 

  14. Cook RW, Middlebrook B, Wilkinson J et al (2018) Analytic validity of decision dx-melanoma, a gene expression profile test for determining metastatic risk in melanoma patients. Diagn Pathol 13:13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cavalleri T, Angelici L, Favero C et al (2017) Plasmatic extracellular vesicle microRNAs in malignant pleural mesothelioma and asbestos-exposed subjects suggest a 2-miRNA signature as potential biomarker of disease. PLoS One 12(5)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gnani D, Romito I, Artuso S et al (2017) Focal adhesion kinase depletion reduces human hepatocellular carcinoma growth by repressing enhancer of zeste homolog 2. Cell Death Differ 24:889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Almeida TA, Quispe-Ricalde A, de Oca FM et al (2014) A high-throughput open-array qPCR gene panel to identify housekeeping genes suitable for myometrium and leiomyoma expression analysis. Gynecol Oncol 134:138–143

    Article  CAS  PubMed  Google Scholar 

  18. Hudson J, Duncavage E, Tamburrino A et al (2013) Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol 95:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farr RJ, Januszewski AS, Joglekar MV et al (2015) A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy. Sci Rep 5:10375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noce A, Pazzola M, Dettori ML et al (2016) Variations at regulatory regions of the milk protein genes are associated with milk traits and coagulation properties in the Sarda sheep. Anim Genet 47:717–726

    Article  CAS  PubMed  Google Scholar 

  21. Viale E, Zanetti E, Ozdemir D et al (2017) Development and validation of a novel SNP panel for the genetic characterization of Italian chicken breeds by next-generation sequencing discovery and array genotyping. Poultry Sci 96:3858–3866

    Article  CAS  Google Scholar 

  22. Pomeroy R, Duncan G, Sunar-Reeder B et al (2009) A low-cost, high-throughput, automated single nucleotide polymorphism assay for forensic human DNA applications. Anal Biochem 395:61–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piergiorgio Stevanato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Broccanello, C., Gerace, L., Stevanato, P. (2020). QuantStudio 12K Flex OpenArray® System as a Tool for High-Throughput Genotyping and Gene Expression Analysis. In: Biassoni, R., Raso, A. (eds) Quantitative Real-Time PCR. Methods in Molecular Biology, vol 2065. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9833-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9833-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9832-6

  • Online ISBN: 978-1-4939-9833-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics