Skip to main content

Self-Establishing Communities: A Yeast Model to Study the Physiological Impact of Metabolic Cooperation in Eukaryotic Cells

  • Protocol
  • First Online:
Yeast Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

All biosynthetically active cells are able to export and import metabolites, the small molecule intermediaries of metabolism. In dense cell populations, this hallmark of cells results in the intercellular exchange of a wide spectrum of metabolites. Such metabolite exchange enables metabolic specialization of individual cells, leading to far reaching biological implications, as a consequence of the intrinsic connection between metabolism and cell physiology. In this chapter, we discuss methods on how to study metabolite exchange interactions by using self-establishing metabolically cooperating communities (SeMeCos) in the budding yeast Saccharomyces cerevisiae. SeMeCos exploit the stochastic segregation of episomes to progressively increase the number of essential metabolic interdependencies in a community that grows out from an initially prototrophic cell. By coupling genotype to metabotype, SeMeCos allow for the tracking of cells while they specialize metabolically and hence the opportunity to study their progressive change in physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campbell K, Herrera-Dominguez L, Correia-Melo C et al (2018) Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Curr Opin Syst Biol 8:97–108

    Article  Google Scholar 

  2. Paczia N, Nilgen A, Lehmann T et al (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Factories 11:122

    Article  CAS  Google Scholar 

  3. Ponomarova O, Gabrielli N, Sévin DC et al (2017) Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst 5:345–357.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  PubMed  CAS  Google Scholar 

  5. Hom EFY, Murray AW (2014) Plant-fungal ecology. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345:94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang X, Zerfaß C, Feng S et al (2018) Impact of spatial organization on a novel auxotrophic interaction among soil microbes. ISME J 12:1443–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sonveaux P, Végran F, Schroeder T et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Freilich S, Zarecki R, Eilam O et al (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2:589

    Article  PubMed  CAS  Google Scholar 

  9. Hosoda K, Suzuki S, Yamauchi Y et al (2011) Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS One 6:e17105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mee MT, Wang HH (2012) Engineering ecosystems and synthetic ecologies. Mol BioSyst 8:2470–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mee MT, Collins JJ, Church GM et al (2014) Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci U S A 111:E2149–E2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse. Genes Dev 24:2603–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaleta C, Schäuble S, Rinas U et al (2013) Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J 8:1105–1114

    Article  CAS  PubMed  Google Scholar 

  14. Orth JD, Conrad TM, Na J et al (2014) A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 7:535–535

    Article  Google Scholar 

  15. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  PubMed  Google Scholar 

  16. Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407

    Article  PubMed  PubMed Central  Google Scholar 

  17. Campbell K, Vowinckel J, Muelleder M et al (2015) Self-establishing communities enable cooperative metabolite exchange in a eukaryote. elife 4:e09943

    Article  PubMed  PubMed Central  Google Scholar 

  18. Momeni B, Waite AJ, Shou W (2013) Spatial self-organization favors heterotypic cooperation over cheating. elife 2:e00960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Müller MJI, Neugeboren BI, Nelson DR et al (2014) Genetic drift opposes mutualism during spatial population expansion. Proc Natl Acad Sci U S A 111:1037–1042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Shou W, Ram S, Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alam MT, Olin-Sandoval V, Stincone A et al (2017) The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. Nat Commun 8:16018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berg JM, Tymoczko JL, Stryer L (2002) Amino acid biosynthesis is regulated by feedback inhibition. In: Berg JM, Tymoczko JL, Stryer L (eds) Biochemistry, 5th edn. WH Freeman, New York, NY

    Google Scholar 

  23. Campbell K, Vowinckel J, Ralser M (2016) Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community. Biotechnol J 11:1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sinclair JH, Stevens BJ, Sanghavi P et al (1967) Mitochondrial-satellite and circular DNA filaments in yeast. Science 156:1234–1237

    Article  CAS  PubMed  Google Scholar 

  25. Christianson TW, Sikorski RS, Dante M et al (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Z, Moo-Young M, Chisti Y (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401–435

    Article  CAS  PubMed  Google Scholar 

  27. Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:35–37

    Article  CAS  PubMed  Google Scholar 

  28. Meinander NQ, Hahn-Hägerdal B (1997) Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Biotechnol Bioeng 54:391–399

    Article  CAS  PubMed  Google Scholar 

  29. Pronk JT (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68:2095–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sardonini CA, Dibiasio D (1987) A model for growth of Saccharomyces cerevisiae containing a recombinant plasmid in selective media. Biotechnol Bioeng 29:469–475

    Article  CAS  PubMed  Google Scholar 

  31. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    Article  CAS  PubMed  Google Scholar 

  32. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brachmann CB, Davies A, Cost GJ et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  PubMed  Google Scholar 

  34. Mülleder M, Campbell K, Matsarskaia O et al (2016) Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities. F1000Research 5:2351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bilsland E, Sparkes A, Williams K et al (2013) Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds. Open Biol 3:120158

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670

    Article  CAS  PubMed  Google Scholar 

  37. Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS carrier DNA/PEG method. In: Xiao W (ed) Yeast protocol, Methods in molecular biology, vol 313. Humana, Totowa, NJ, pp 107–120

    Chapter  Google Scholar 

  38. Hoek TA, Axelrod K, Biancalani T et al (2016) Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol 14:e1002540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Alam MT, Zelezniak A, Mülleder M et al (2016) The metabolic background is a global player in Saccharomyces gene expression epistasis. Nat Microbiol 1:15030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harcombe W (2010) Novel cooperation experimentally evolved between species. Evolution 64:2166–2172

    PubMed  Google Scholar 

  41. Jia X, Liu C, Song H et al (2016) Design, analysis and application of synthetic microbial consortia. Synth Syst Biotechnol 1:109–117

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pande S, Shitut S, Freund L et al (2015) Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun 6:6238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Susann Zilkenat for critical comments and proofreading of the manuscript. Work in the Ralser lab was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001134), the UK Medical Research Council (FC001134), and the Wellcome Trust (FC001134), and received specific funding from the Wellcome Trust (RG 200829/Z/16/Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kate Campbell or Markus Ralser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Campbell, K., Correia-Melo, C., Ralser, M. (2019). Self-Establishing Communities: A Yeast Model to Study the Physiological Impact of Metabolic Cooperation in Eukaryotic Cells. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics