Skip to main content

Physiology of Microglia

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

Abstract

Microglial cells derive from fetal macrophages which immigrate into and disseminate throughout the central nervous system (CNS) in early embryogenesis. After settling in the nerve tissue, microglial progenitors acquire an idiosyncratic morphological phenotype with small cell body and moving thin and highly ramified processes currently defined as “resting or surveillant microglia”. Physiology of microglia is manifested by second messenger-mediated cellular excitability, low resting membrane conductance, and expression of receptors to pathogen- or damage-associated molecular patterns (PAMPs and DAMPs), as well as receptors to classical neurotransmitters and neurohormones. This specific physiological profile reflects adaptive changes of myeloid cells to the CNS environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Del Rio-Hortega P (1919) Poder fagocitario y movilidad de la microglia. Bol de la Soc esp de biol 9:154

    Google Scholar 

  2. Del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 2. Hoeber, New York, pp 482–534

    Google Scholar 

  3. Sierra A, de Castro F, Del Rio-Hortega J, Rafael Iglesias-Rozas J, Garrosa M, Kettenmann H (2016) The “Big-Bang” for modern glial biology: translation and comments on Pio del Rio-Hortega 1919 series of papers on microglia. Glia 64:1801–1840. https://doi.org/10.1002/glia.23046

    Article  PubMed  Google Scholar 

  4. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kierdorf K et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280. https://doi.org/10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  6. Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  7. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  8. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553. https://doi.org/10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  9. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    Article  CAS  PubMed  Google Scholar 

  10. Mosser CA, Baptista S, Arnoux I, Audinat E (2017) Microglia in CNS development: shaping the brain for the future. Prog Neurobiol 149–150:1–20. https://doi.org/10.1016/j.pneurobio.2017.01.002

    Article  PubMed  Google Scholar 

  11. Miyamoto A et al (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 7:12540. https://doi.org/10.1038/ncomms12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reemst K, Noctor SC, Lucassen PJ, Hol EM (2016) The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci 10:566. https://doi.org/10.3389/fnhum.2016.00566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069. https://doi.org/10.1523/JNEUROSCI.4158-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527. https://doi.org/10.1371/journal.pbio.1000527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parkhurst CN et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609. https://doi.org/10.1016/j.cell.2013.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Z et al (2014) Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat Commun 5:4486. https://doi.org/10.1038/ncomms5486

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36:605–613. https://doi.org/10.1016/j.it.2015.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond Ser B Biol Sci 369:20130595. https://doi.org/10.1098/rstb.2013.0595

    Article  CAS  Google Scholar 

  20. De Leo JA, Tawfik VL, LaCroix-Fralish ML (2006) The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain 122:17–21. https://doi.org/10.1016/j.pain.2006.02.034

    Article  CAS  PubMed  Google Scholar 

  21. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109:E197–E205. https://doi.org/10.1073/pnas.1111098109

    Article  PubMed  Google Scholar 

  22. Sierra A et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495. https://doi.org/10.1016/j.stem.2010.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paolicelli RC et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. https://doi.org/10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  24. Schafer DP et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. https://doi.org/10.1016/j.neuron.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30:596–602

    Article  CAS  PubMed  Google Scholar 

  26. Coull JA et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021. https://doi.org/10.1038/nature04223

    Article  CAS  PubMed  Google Scholar 

  27. Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680. https://doi.org/10.1016/j.neuron.2008.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Denizet M, Cotter L, Lledo PM, Lazarini F (2017) Sensory deprivation increases phagocytosis of adult-born neurons by activated microglia in the olfactory bulb. Brain Behav Immun 60:38–43. https://doi.org/10.1016/j.bbi.2016.09.015

    Article  PubMed  Google Scholar 

  29. Konishi H, Kiyama H, Ueno M (2018) Dual functions of microglia in the formation and refinement of neural circuits during development. Int J Dev Neurosci. https://doi.org/10.1016/j.ijdevneu.2018.09.009

  30. Frost JL, Schafer DP (2016) Microglia: architects of the developing nervous system. Trends Cell Biol 26:587–597. https://doi.org/10.1016/j.tcb.2016.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  31. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, Kipnis J (2012) Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–109. https://doi.org/10.1038/nature10907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–785. https://doi.org/10.1016/j.cell.2010.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brawek B et al (2017) A new approach for ratiometric in vivo calcium imaging of microglia. Sci Rep 7:6030. https://doi.org/10.1038/s41598-017-05952-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brawek B, Garaschuk O (2017) Monitoring in vivo function of cortical microglia. Cell Calcium 64:109–117. https://doi.org/10.1016/j.ceca.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  35. Zheng K, Bard L, Reynolds JP, King C, Jensen TP, Gourine AV, Rusakov DA (2015) Time-resolved imaging reveals heterogeneous landscapes of nanomolar Ca2+ in neurons and astroglia. Neuron 88:277–288. https://doi.org/10.1016/j.neuron.2015.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boucsein C, Kettenmann H, Nolte C (2000) Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 12:2049–2058

    Article  CAS  PubMed  Google Scholar 

  37. Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17:2267–2276

    Article  PubMed  Google Scholar 

  38. Norenberg W, Langosch JM, Gebicke-Haerter PJ, Illes P (1994) Characterization and possible function of adenosine 5′-triphosphate receptors in activated rat microglia. Br J Pharmacol 111:942–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brockhaus J, Ilschner S, Banati RB, Kettenmann H (1993) Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice. J Neurosci 13:4412–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Norenberg W, Gebicke-Haerter PJ, Illes P (1992) Inflammatory stimuli induce a new K+ outward current in cultured rat microglia. Neurosci Lett 147:171–174

    Article  CAS  PubMed  Google Scholar 

  41. Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E (2008) Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 28:9133–9144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lyons SA et al (2000) Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 20:1537–1549

    Article  CAS  PubMed  Google Scholar 

  43. Seifert S, Pannell M, Uckert W, Farber K, Kettenmann H (2011) Transmitter- and hormone-activated Ca2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca2+ sensor. Cell Calcium 49:365–375. https://doi.org/10.1016/j.ceca.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  44. Schilling T, Eder C (2007) Ion channel expression in resting and activated microglia of hippocampal slices from juvenile mice. Brain Res 1186:21–28

    Article  CAS  PubMed  Google Scholar 

  45. Fordyce CB, Jagasia R, Zhu X, Schlichter LC (2005) Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 25:7139–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schilling T, Quandt FN, Cherny VV, Zhou W, Heinemann U, Decoursey TE, Eder C (2000) Upregulation of Kv1.3 K+ channels in microglia deactivated by TGF-beta. Am J Physiol Cell Physiol 279:C1123–C1134

    Article  CAS  PubMed  Google Scholar 

  47. Kaushal V, Koeberle PD, Wang Y, Schlichter LC (2007) The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci 27:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khanna R, Roy L, Zhu X, Schlichter LC (2001) K+ channels and the microglial respiratory burst. Am J Physiol Cell Physiol 280:C796–C806

    Article  CAS  PubMed  Google Scholar 

  49. Schlichter LC, Kaushal V, Moxon-Emre I, Sivagnanam V, Vincent C (2010) The Ca2+ activated SK3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro. J Neuroinflammation 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Korotzer AR, Cotman CW (1992) Voltage-gated currents expressed by rat microglia in culture. Glia 6:81–88

    Article  CAS  PubMed  Google Scholar 

  51. Norenberg W, Illes P, Gebicke-Haerter PJ (1994) Sodium channel in isolated human brain macrophages (microglia). Glia 10:165–172

    Article  CAS  PubMed  Google Scholar 

  52. Black JA, Liu S, Waxman SG (2009) Sodium channel activity modulates multiple functions in microglia. Glia 57:1072–1081

    Article  PubMed  Google Scholar 

  53. Craner MJ et al (2005) Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 49:220–229

    Article  PubMed  Google Scholar 

  54. Ohana L, Newell EW, Stanley EF, Schlichter LC (2009) The Ca2+ release-activated Ca2+ current (ICRAC) mediates store-operated Ca2+ entry in rat microglia. Channels (Austin) 3:129–139

    Article  CAS  Google Scholar 

  55. Beck A, Penner R, Fleig A (2008) Lipopolysaccharide-induced down-regulation of Ca2+ release-activated Ca2+ currents (I CRAC) but not Ca2+-activated TRPM4-like currents (I CAN) in cultured mouse microglial cells. J Physiol 586:427–439

    Article  CAS  PubMed  Google Scholar 

  56. Ducharme G, Newell EW, Pinto C, Schlichter LC (2007) Small-conductance Cl channels contribute to volume regulation and phagocytosis in microglia. Eur J Neurosci 26:2119–2130

    Article  PubMed  Google Scholar 

  57. Milton RH et al (2008) CLIC1 function is required for beta-amyloid-induced generation of reactive oxygen species by microglia. J Neurosci 28:11488–11499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eder C, DeCoursey TE (2001) Voltage-gated proton channels in microglia. Prog Neurobiol 64:277–305

    Article  CAS  PubMed  Google Scholar 

  59. Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208. https://doi.org/10.1007/s12035-009-8063-2

    Article  CAS  PubMed  Google Scholar 

  60. Pankratov Y, Lalo U, Verkhratsky A, North RA (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265. https://doi.org/10.1085/jgp.200609693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29. https://doi.org/10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  62. Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8:629–657. https://doi.org/10.1007/s11302-012-9300-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261

    Article  CAS  PubMed  Google Scholar 

  64. Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539

    CAS  PubMed  Google Scholar 

  65. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  CAS  PubMed  Google Scholar 

  66. Sanz JM et al (2009) Activation of microglia by amyloid β requires P2X7 receptor expression. J Immunol 182:4378–4385

    Article  CAS  PubMed  Google Scholar 

  67. Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29:3781–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  CAS  PubMed  Google Scholar 

  69. Toescu EC, Moller T, Kettenmann H, Verkhratsky A (1998) Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience 86:925–935

    Article  CAS  PubMed  Google Scholar 

  70. Koizumi S et al (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446:1091–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S (2010) P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 58:790–801

    PubMed  Google Scholar 

  72. Noda M, Nakanishi H, Nabekura J, Akaike N (2000) AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci 20:251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamada J, Sawada M, Nakanishi H (2006) Cell cycle-dependent regulation of kainate-induced inward currents in microglia. Biochem Biophys Res Commun 349:913–919. https://doi.org/10.1016/j.bbrc.2006.08.126

    Article  CAS  PubMed  Google Scholar 

  74. Kaindl AM et al (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72:536–549. https://doi.org/10.1002/ana.23626

    Article  CAS  PubMed  Google Scholar 

  75. Taylor DL, Diemel LT, Cuzner ML, Pocock JM (2002) Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J Neurochem 82:1179–1191

    Article  CAS  PubMed  Google Scholar 

  76. Taylor DL, Diemel LT, Pocock JM (2003) Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J Neurosci 23:2150–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuhn SA et al (2004) Microglia express GABAB receptors to modulate interleukin release. Mol Cell Neurosci 25:312–322

    Article  CAS  PubMed  Google Scholar 

  78. Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta 1813:1014–1024. https://doi.org/10.1016/j.bbamcr.2010.10.018

    Article  CAS  PubMed  Google Scholar 

  79. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250–1257. https://doi.org/10.1038/ni1412

    Article  CAS  PubMed  Google Scholar 

  80. Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233. https://doi.org/10.1111/j.1600-065X.2008.00731.x

    Article  CAS  PubMed  Google Scholar 

  81. Sansonetti PJ (2006) The innate signaling of dangers and the dangers of innate signaling. Nat Immunol 7:1237–1242. https://doi.org/10.1038/ni1420

    Article  CAS  PubMed  Google Scholar 

  82. Hansson GK, Edfeldt K (2005) Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol 25:1085–1087

    Article  CAS  PubMed  Google Scholar 

  83. Leulier F, Lemaitre B (2008) Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 9:165–178

    Article  CAS  PubMed  Google Scholar 

  84. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    Article  CAS  PubMed  Google Scholar 

  85. Ebert S, Zeretzke M, Nau R, Michel U (2007) Microglial cells and peritoneal macrophages release activin A upon stimulation with Toll-like receptor agonists. Neurosci Lett 413:241–244

    Article  CAS  PubMed  Google Scholar 

  86. Gurley C, Nichols J, Liu S, Phulwani NK, Esen N, Kielian T (2008) Microglia and astrocyte activation by Toll-like receptor ligands: modulation by PPAR-gamma agonists. PPAR Res 2008:453120

    Article  PubMed  PubMed Central  Google Scholar 

  87. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. https://doi.org/10.1038/nri1391

    Article  CAS  PubMed  Google Scholar 

  88. Aravalli RN, Peterson PK, Lokensgard JR (2007) Toll-like receptors in defense and damage of the central nervous system. J Neuroimmune Pharmacol 2:297–312

    Article  PubMed  Google Scholar 

  89. Carpentier PA, Duncan DS, Miller SD (2008) Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 22:140–147

    Article  CAS  PubMed  Google Scholar 

  90. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924

    Article  CAS  PubMed  Google Scholar 

  91. Biber K, Vinet J, Boddeke HW (2008) Neuron-microglia signaling: chemokines as versatile messengers. J Neuroimmunol 198:69–74

    Article  CAS  PubMed  Google Scholar 

  92. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  CAS  PubMed  Google Scholar 

  93. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    Article  CAS  PubMed  Google Scholar 

  94. Klegeris A, Choi HB, McLarnon JG, McGeer PL (2007) Functional ryanodine receptors are expressed by human microglia and THP-1 cells: their possible involvement in modulation of neurotoxicity. J Neurosci Res 85:2207–2215

    Article  CAS  PubMed  Google Scholar 

  95. Shideman CR, Hu S, Peterson PK, Thayer SA (2006) CCL5 evokes calcium signals in microglia through a kinase-, phosphoinositide-, and nucleotide-dependent mechanism. J Neurosci Res 83:1471–1484

    Article  CAS  PubMed  Google Scholar 

  96. Franco L et al (2006) Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line. J Neurochem 99:165–176

    Article  CAS  PubMed  Google Scholar 

  97. Mayo L, Jacob-Hirsch J, Amariglio N, Rechavi G, Moutin MJ, Lund FE, Stein R (2008) Dual role of CD38 in microglial activation and activation-induced cell death. J Immunol 181:92–103

    Article  CAS  PubMed  Google Scholar 

  98. Verkhratsky A, Parpura V (2014) Store-operated calcium entry in neuroglia. Neurosci Bull 30:125–133. https://doi.org/10.1007/s12264-013-1343-x

    Article  CAS  PubMed  Google Scholar 

  99. Moller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H (1997) Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci 17:615–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moller T, Kann O, Prinz M, Kirchhoff F, Verkhratsky A, Kettenmann H (1997) Endothelin-induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors. Neuroreport 8:2127–2131

    Article  CAS  PubMed  Google Scholar 

  101. Brawek B, Schwendele B, Riester K, Kohsaka S, Lerdkrai C, Liang Y, Garaschuk O (2014) Impairment of in vivo calcium signaling in amyloid plaque-associated microglia. Acta Neuropathol 127:495–505. https://doi.org/10.1007/s00401-013-1242-2

    Article  CAS  PubMed  Google Scholar 

  102. Korvers L, de Andrade Costa A, Mersch M, Matyash V, Kettenmann H, Semtner M (2016) Spontaneous Ca2+ transients in mouse microglia. Cell Calcium 60:396–406. https://doi.org/10.1016/j.ceca.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  103. Pozner A, Xu B, Palumbos S, Gee JM, Tvrdik P, Capecchi MR (2015) Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse. Front Mol Neurosci 8:12. https://doi.org/10.3389/fnmol.2015.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by VolkswagenStiftung Grant 90233 (to O.G. and A.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Garaschuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garaschuk, O., Verkhratsky, A. (2019). Physiology of Microglia. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics