Skip to main content

Tubulin Tyrosine Ligase-Mediated Modification of Proteins

  • Protocol
  • First Online:
Enzyme-Mediated Ligation Methods

Abstract

Tubulin tyrosine ligase (TTL) catalyzes the addition of tyrosine derivatives to the C-terminal carboxylic acid of proteins. The enzyme binds to a 14-amino acid recognition sequence, termed Tub-tag, and allows for the introduction of tyrosine derivatives that carry a unique chemical handle. These handles enable subsequent bioorthogonal reactions with a great variety of probes or effector molecules. Clearly, this two-step chemoenzymatic approach, facilitates the site-specific functionalization of proteins. Furthermore, due to its broad substrate tolerance, tubulin tyrosine ligase also enables an enzymatic one-step modification. For example, a coumarin amino acid was utilized to generate fluorescently labeled proteins for advanced applications in imaging and diagnostics. Here we describe the modification of proteins using TTL in detail via a one-step as well as two-step procedure and highlight its practicability for applications in imaging, diagnostics, and cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hackenberger CP, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides and proteins. Angew Chem Int Ed 47:10030–10074

    Article  Google Scholar 

  2. Massa S, Xavier C, De Vos J et al (2014) Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem 25:979–988

    Article  Google Scholar 

  3. Schumacher D, Hackenberger CPR (2014) More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. Curr Opin Chem Biol 22:62–69

    Article  Google Scholar 

  4. Schumacher D, Helma-Smets J, Hackenberger C et al (2018) Neue generation von Antikörper-Wirkstoff-Konjugaten. Chem Unserer Zeit 52:80–83

    Article  Google Scholar 

  5. Schumacher D, Hackenberger CP, Leonhardt H et al (2016) Current status: site-specific antibody drug conjugates. J Clin Immunol 36:100–107

    Article  Google Scholar 

  6. Chari RV, Martell BA, Gross JL et al (1992) Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 52:127–131

    Google Scholar 

  7. Pleiner T, Bates M, Trakhanov S et al (2015) Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. Elife 4:e11349

    Article  Google Scholar 

  8. Doronina SO, Toki BE, Torgov MY et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    Article  Google Scholar 

  9. Guo J, Kumar S, Prashad A et al (2014) Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol-maleimide chemistry. Pharm Res 31:1710–1723

    Article  Google Scholar 

  10. Rabuka D (2010) Chemoenzymatic methods for site-specific protein modification. Curr Opin Chem Biol 14:790–796

    Article  Google Scholar 

  11. Siegmund V, Schmelz S, Dickgiesser S et al (2015) Locked by design: a conformationally constrained transglutaminase tag enables efficient site-specific conjugation. Angew Chem Int Ed 54:13420–13424

    Article  Google Scholar 

  12. Mao H, Hart SA, Schink A et al (2004) Sortase-mediated protein ligation: a new method for protein engineering. J Am Chem Soc 126:2670–2671

    Article  Google Scholar 

  13. Williamson DJ, Fascione MA, Webb ME et al (2012) Efficient N-terminal labeling of proteins by use of sortase. Angew Chem Int Ed 51:9377–9380

    Article  Google Scholar 

  14. Rashidian M, Dozier JK, Distefano MD (2013) Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 24:1277–1294

    Article  Google Scholar 

  15. Boeggeman E, Ramakrishnan B, Pasek M et al (2009) Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem 20:1228–1236

    Article  Google Scholar 

  16. Frese M-A, Dierks T (2009) Formylglycine aldehyde tag—protein engineering through a novel post-translational modification. Chembiochem 10:425–427

    Article  Google Scholar 

  17. Jeger S, Zimmermann K, Blanc A et al (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed 49:9995–9997

    Article  Google Scholar 

  18. Zeglis BM, Davis CB, Aggeler R et al (2013) Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug Chem 24:1057–1067

    Article  Google Scholar 

  19. Chen X, Wu Y-W (2016) Selective chemical labeling of proteins. Org Biomol Chem 14:5417–5439

    Article  Google Scholar 

  20. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998

    Article  Google Scholar 

  21. Patterson DM, Nazarova LA, Prescher JA (2014) Finding the right (bioorthogonal) chemistry. ACS Chem Biol 9:592–605

    Article  Google Scholar 

  22. Schumacher D, Helma J, Mann FA et al (2015) Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed 54:13787–13791

    Article  Google Scholar 

  23. Helma J, Leonhardt H, Hackenberger CPR et al (2018) Tub-tag labeling; chemoenzymatic incorporation of unnatural amino acids. In: Lemke EA (ed) Noncanonical amino acids: methods and protocols. Springer, New York, pp 67–93

    Chapter  Google Scholar 

  24. Kirchhofer A, Helma J, Schmidthals K et al (2010) Modulation of protein properties in living cells using nanobodies. Nat Struct Mol Biol 17:133–138

    Article  Google Scholar 

  25. Schumacher D, Lemke O, Helma J et al (2017) Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling. Chem Sci 8:3471–3478

    Article  Google Scholar 

  26. Davis DL, Price EK, Aderibigbe SO et al (2016) Effect of buffer conditions and organic cosolvents on the rate of strain-promoted azide–alkyne cycloaddition. J Org Chem 81:6816–6819

    Article  Google Scholar 

  27. Ulrich S, Boturyn D, Marra A et al (2014) Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry 20:34–41

    Article  Google Scholar 

  28. Arbabi Ghahroudi M, Desmyter A, Wyns L et al (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  Google Scholar 

  29. Rothbauer U, Zolghadr K, Muyldermans S et al (2008) A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteomics 7:282–289

    Article  Google Scholar 

  30. Banerjee A, Panosian TD, Mukherjee K et al (2010) Site-specific orthogonal labeling of the carboxy terminus of alpha-tubulin. ACS Chem Biol 5:777–785

    Article  Google Scholar 

  31. Brun M-P, Bischoff L, Garbay C (2004) A very short route to enantiomerically pure coumarin-bearing fluorescent amino acids. Angew Chem Int Ed 43:3432–3436

    Article  Google Scholar 

  32. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  Google Scholar 

  33. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the (Exist Forschungstransfer I), the Bavarian Ministry of Economic Affairs, Energy and Technology (m4-Award), the Deutsche Forschungsgemeinschaft (SPP1623) to C.P.R.H. (HA 4468/9-1) and H.L. (LE 721/13-1), the Nano-systems Initiative Munich (NIM) to H.L., the Einstein Foundation Berlin (Leibniz-Humboldt Professorship), the Boehringer-Ingelheim Foundation (Plus 3 award) to C.P.R.H. and from the Fonds der Chemischen Industrie (FCI) to C.P.R.H. and to D.S. (Kekulé-scholarship).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominik Schumacher or Jonas Helma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gerlach, M., Stoschek, T., Leonhardt, H., Hackenberger, C.P.R., Schumacher, D., Helma, J. (2019). Tubulin Tyrosine Ligase-Mediated Modification of Proteins. In: Nuijens, T., Schmidt, M. (eds) Enzyme-Mediated Ligation Methods. Methods in Molecular Biology, vol 2012. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9546-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9546-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9545-5

  • Online ISBN: 978-1-4939-9546-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics