Skip to main content

Discovery of Functional Macrocyclic Peptides by Means of the RaPID System

  • Protocol
  • First Online:
Cyclic Peptide Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2001))

Abstract

Flexizymes, highly flexible tRNA aminoacylation ribozymes, have enabled charging of virtually any amino acid (including non-proteogenic ones) onto tRNA molecules. Coupling to a custom-made in vitro translation system, namely the flexible in vitro translation (FIT) system, has unveiled the remarkable tolerance of the ribosome toward molecules, remote from what nature has selected to carry out its elaborate functions. Among the very diverse molecules and chemistries that have been ribosomally incorporated, a plethora of entities capable of mediating intramolecular cyclization have revolutionized the design and discovery of macrocyclic peptides. These macrocyclization reactions (which can be spontaneous, chemical, or enzymatic) have all served as tools for the discovery of peptides with natural-like structures and properties. Coupling of the FIT system and mRNA display techniques, known as the random non-standard peptide integrated discovery (RaPID) system, has in turn allowed for the simultaneous screening of trillions of macrocyclic peptides against challenging biological targets. The macrocyclization methodologies are chosen depending on the structural and functional characteristics of the desired molecule. Thus, they can emanate from the peptide’s N-terminus or its side chains, attributing flexibility or rigidity, or even result in the installation of fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heinis C, Rutherford T, Freund S, Winter G (2009) Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat Chem Biol 5(7):502–507. https://doi.org/10.1038/nchembio.184

    Article  CAS  PubMed  Google Scholar 

  2. Chen S, Rentero Rebollo I, Buth SA, Morales-Sanfrutos J, Touati J, Leiman PG, Heinis C (2013) Bicyclic peptide ligands pulled out of cysteine-rich peptide libraries. J Am Chem Soc 135(17):6562–6569. https://doi.org/10.1021/ja400461h

    Article  CAS  PubMed  Google Scholar 

  3. Daly NL, Craik DJ (2011) Bioactive cystine knot proteins. Curr Opin Chem Biol 15(3):362–368. https://doi.org/10.1016/j.cbpa.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  4. Pluckthun A (2012) Ribosome display: a perspective. Methods Mol Biol 805:3–28. https://doi.org/10.1007/978-1-61779-379-0_1

    Article  CAS  PubMed  Google Scholar 

  5. Roberts RW (1999) Totally in vitro protein selection using mRNA-protein fusions and ribosome display. Curr Opin Chem Biol 3(3):268–273. https://doi.org/10.1016/S1367-5931(99)80042-8

    Article  CAS  PubMed  Google Scholar 

  6. Rogers JM, Suga H (2015) Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming. Org Biomol Chem 13(36):9353–9363. https://doi.org/10.1039/c5ob01336d

    Article  CAS  PubMed  Google Scholar 

  7. Hoesl MG, Budisa N (2012) Recent advances in genetic code engineering in Escherichia coli. Curr Opin Biotechnol 23(5):751–757. https://doi.org/10.1016/j.copbio.2011.12.027

    Article  CAS  PubMed  Google Scholar 

  8. Terasaka N, Hayashi G, Katoh T, Suga H (2014) An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center. Nat Chem Biol 10(7):555–557. https://doi.org/10.1038/nchembio.1549

    Article  CAS  PubMed  Google Scholar 

  9. Goto Y, Katoh T, Suga H (2011) Flexizymes for genetic code reprogramming. Nat Protoc 6(6):779–790. https://doi.org/10.1038/nprot.2011.331

    Article  CAS  PubMed  Google Scholar 

  10. Murakami H, Ohta A, Ashigai H, Suga H (2006) A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat Methods 3(5):357–359. https://doi.org/10.1038/nmeth877

    Article  CAS  PubMed  Google Scholar 

  11. Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267(5198):643–647

    Article  CAS  PubMed  Google Scholar 

  12. Illangasekare M, Yarus M (1999) Specific, rapid synthesis of Phe-RNA by RNA. Proc Natl Acad Sci U S A 96(10):5470–5475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lohse PA, Szostak JW (1996) Ribozyme-catalysed amino-acid transfer reactions. Nature 381(6581):442–444. https://doi.org/10.1038/381442a0

    Article  CAS  PubMed  Google Scholar 

  14. Lee N, Bessho Y, Wei K, Szostak JW, Suga H (2000) Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Biol 7(1):28–33. https://doi.org/10.1038/71225

    Article  CAS  PubMed  Google Scholar 

  15. Saito H, Kourouklis D, Suga H (2001) An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J 20(7):1797–1806. https://doi.org/10.1093/emboj/20.7.1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morimoto J, Hayashi Y, Iwasaki K, Suga H (2011) Flexizymes: their evolutionary history and the origin of catalytic function. Acc Chem Res 44(12):1359–1368. https://doi.org/10.1021/ar2000953

    Article  CAS  PubMed  Google Scholar 

  17. Murakami H, Kourouklis D, Suga H (2003) Using a solid-phase ribozyme aminoacylation system to reprogram the genetic code. Chem Biol 10(11):1077–1084

    Article  CAS  PubMed  Google Scholar 

  18. Ramaswamy K, Saito H, Murakami H, Shiba K, Suga H (2004) Designer ribozymes: programming the tRNA specificity into flexizyme. J Am Chem Soc 126(37):11454–11455. https://doi.org/10.1021/ja046843y

    Article  CAS  PubMed  Google Scholar 

  19. Saito H, Watanabe K, Suga H (2001) Concurrent molecular recognition of the amino acid and tRNA by a ribozyme. RNA 7(12):1867–1878

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Murakami H, Saito H, Suga H (2003) A versatile tRNA aminoacylation catalyst based on RNA. Chem Biol 10(7):655–662

    Article  CAS  PubMed  Google Scholar 

  21. Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36(3):299–304. https://doi.org/10.1016/j.ymeth.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  22. Katoh T, Suga H (2018) Ribosomal incorporation of consecutive beta-amino acids. J Am Chem Soc 140(38):12159–12167. https://doi.org/10.1021/jacs.8b07247

    Article  CAS  PubMed  Google Scholar 

  23. Ohshiro Y, Nakajima E, Goto Y, Fuse S, Takahashi T, Doi T, Suga H (2011) Ribosomal synthesis of backbone-macrocyclic peptides containing gamma-amino acids. Chembiochem 12(8):1183–1187. https://doi.org/10.1002/cbic.201100104

    Article  CAS  PubMed  Google Scholar 

  24. Rogers JM, Kwon S, Dawson SJ, Mandal PK, Suga H, Huc I (2018) Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids. Nat Chem 10(4):405–412. https://doi.org/10.1038/s41557-018-0007-x

    Article  CAS  PubMed  Google Scholar 

  25. Torikai K, Suga H (2014) Ribosomal synthesis of an amphotericin-B inspired macrocycle. J Am Chem Soc 136(50):17359–17361. https://doi.org/10.1021/ja508648s

    Article  CAS  PubMed  Google Scholar 

  26. Yamagishi Y, Ashigai H, Goto Y, Murakami H, Suga H (2009) Ribosomal synthesis of cyclic peptides with a fluorogenic oxidative coupling reaction. Chembiochem 10(9):1469–1472. https://doi.org/10.1002/cbic.200900021

    Article  CAS  PubMed  Google Scholar 

  27. Atsushi O, Hiroshi M, Hiroaki S, (2008) Polymerization of α-Hydroxy Acids by Ribosomes. Chem Bio Chem 9(17):2773–2778

    Google Scholar 

  28. Yamagishi Y, Shoji I, Miyagawa S, Kawakami T, Katoh T, Goto Y, Suga H (2011) Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem Biol 18(12):1562–1570. https://doi.org/10.1016/j.chembiol.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  29. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94(23):12297–12302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414(2):405–408

    Article  CAS  PubMed  Google Scholar 

  31. Kawamura A, Munzel M, Kojima T, Yapp C, Bhushan B, Goto Y, Tumber A, Katoh T, King ON, Passioura T, Walport LJ, Hatch SB, Madden S, Muller S, Brennan PE, Chowdhury R, Hopkinson RJ, Suga H, Schofield CJ (2017) Highly selective inhibition of histone demethylases by de novo macrocyclic peptides. Nat Commun 8:14773. https://doi.org/10.1038/ncomms14773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goto Y, Suga H (2009) Translation initiation with initiator tRNA charged with exotic peptides. J Am Chem Soc 131(14):5040–5041. https://doi.org/10.1021/ja900597d

    Article  CAS  PubMed  Google Scholar 

  33. Roberts KD, Lambert JN, Ede NJ, Bray AM (1998) Efficient synthesis of thioether-based cyclic peptide libraries. Tetrahedron Lett 39(45):8357–8360. https://doi.org/10.1016/S0040-4039(98)01843-7

    Article  CAS  Google Scholar 

  34. Lung F-D, King CR, Roller PP (1999) Development of non-phosphorylated cyclic thioether peptide to the Grb2-SH2 domain. Lett Pept Sci 6(1):45–49. https://doi.org/10.1007/BF02443617

    Article  CAS  Google Scholar 

  35. Yu L, Lai Y, Wade JV, Coutts SM (1998) A simple and efficient method for the syntheses of thioether cyclic peptides. Tetrahedron Lett 39(37):6633–6636. https://doi.org/10.1016/S0040-4039(98)01397-5

    Article  CAS  Google Scholar 

  36. Iwasaki K, Goto Y, Katoh T, Suga H (2012) Selective thioether macrocyclization of peptides having the N-terminal 2-chloroacetyl group and competing two or three cysteine residues in translation. Org Biomol Chem 10(30):5783–5786. https://doi.org/10.1039/C2OB25306B

    Article  CAS  PubMed  Google Scholar 

  37. Ezure T, Nanatani K, Sato Y, Suzuki S, Aizawa K, Souma S, Ito M, Hohsaka T, von Heijine G, Utsumi T, Abe K, Ando E, Uozumi N (2014) A cell-free translocation system using extracts of cultured insect cells to yield functional membrane proteins. PLoS One 9(12):e112874. https://doi.org/10.1371/journal.pone.0112874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawakami T, Ohta A, Ohuchi M, Ashigai H, Murakami H, Suga H (2009) Diverse backbone-cyclized peptides via codon reprogramming. Nat Chem Biol 5(12):888–890. https://doi.org/10.1038/nchembio.259

    Article  CAS  PubMed  Google Scholar 

  39. Sako Y, Goto Y, Murakami H, Suga H (2008) Ribosomal synthesis of peptidase-resistant peptides closed by a nonreducible inter-side-chain bond. ACS Chem Biol 3(4):241–249. https://doi.org/10.1021/cb800010p

    Article  CAS  PubMed  Google Scholar 

  40. Berkowitz DB, McFadden JM, Sloss MK (2000) Engineering acyclic stereocontrol in the alkylation of vinylglycine-derived dianions: asymmetric synthesis of higher alpha-vinyl amino acids. J Org Chem 65(10):2907–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bretschneider T, Miltz W, Münster P, Steglich W (1988) New syntheses of α-amino acids based on n-acylimino acetates. Tetrahedron 44(17):5403–5414. https://doi.org/10.1016/S0040-4020(01)86046-4

    Article  CAS  Google Scholar 

  42. Goto Y, Iwasaki K, Torikai K, Murakami H, Suga H (2009) Ribosomal synthesis of dehydrobutyrine- and methyllanthionine-containing peptides. Chem Commun (Camb) (23):3419–3421. https://doi.org/10.1039/b904314d

  43. Nakajima E, Goto Y, Sako Y, Murakami H, Suga H (2009) Ribosomal synthesis of peptides with C-terminal lactams, thiolactones, and alkylamides. Chembiochem 10(7):1186–1192. https://doi.org/10.1002/cbic.200900058

    Article  CAS  PubMed  Google Scholar 

  44. Bashiruddin NK, Nagano M, Suga H (2015) Synthesis of fused tricyclic peptides using a reprogrammed translation system and chemical modification. Bioorg Chem 61:45–50. https://doi.org/10.1016/j.bioorg.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  45. Sako Y, Morimoto J, Murakami H, Suga H (2008) Ribosomal synthesis of bicyclic peptides via two orthogonal inter-side-chain reactions. J Am Chem Soc 130(23):7232–7234. https://doi.org/10.1021/ja800953c

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Suga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tsiamantas, C., Otero-Ramirez, M.E., Suga, H. (2019). Discovery of Functional Macrocyclic Peptides by Means of the RaPID System. In: Goetz, G. (eds) Cyclic Peptide Design. Methods in Molecular Biology, vol 2001. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9504-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9504-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9503-5

  • Online ISBN: 978-1-4939-9504-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics