Skip to main content

β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling

  • Protocol
  • First Online:
Beta-Arrestins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1957))

Abstract

The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfister C et al (1985) Retinal S antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Science 228(4701):891–893

    Article  CAS  PubMed  Google Scholar 

  2. Lohse MJ et al (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248(4962):1547–1550

    Article  CAS  PubMed  Google Scholar 

  3. Attramadal H et al (1992) beta-Arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267(25):17882–17890

    CAS  PubMed  Google Scholar 

  4. Tian X, Kang DS, Benovic JL (2014) beta-arrestins and G protein-coupled receptor trafficking. Handb Exp Pharmacol 219:173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith JS, Rajagopal S (2016) The beta-arrestins: multifunctional regulators of G protein-coupled receptors. J Biol Chem 291(17):8969–8977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kang DS, Tian X, Benovic JL (2014) Role of beta-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Curr Opin Cell Biol 27:63–71

    Article  PubMed  CAS  Google Scholar 

  7. Aubry L, Guetta D, Klein G (2009) The arrestin fold: variations on a theme. Curr Genomics 10(2):133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005(308):cm10

    PubMed  Google Scholar 

  9. Peterson YK, Luttrell LM (2017) The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol Rev 69(3):256–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiao K et al (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci U S A 104(29):12011–12016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dewire SM et al (2007) beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  12. Song X et al (2006) Visual and both non-visual arrestins in their "inactive" conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281(30):21491–21499

    Article  CAS  PubMed  Google Scholar 

  13. Chen Q, Iverson TM, Gurevich VV (2018) Structural basis of arrestin-dependent signal transduction. Trends Biochem Sci 43(6):412–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Enslen H, Lima-Fernandes E, Scott MG (2014) Arrestins as regulatory hubs in cancer signalling pathways. Handb Exp Pharmacol 219:405–425

    Article  CAS  PubMed  Google Scholar 

  15. Shukla AK, Xiao K, Lefkowitz RJ (2011) Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 36(9):457–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crepieux P et al (2017) A comprehensive view of the beta-arrestinome. Front Endocrinol 8:32

    Article  Google Scholar 

  17. Hauser AS et al (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16(12):829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sriram K, Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 93(4):251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  20. Gurevich EV et al (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133(1):40–69

    Article  CAS  PubMed  Google Scholar 

  21. Benovic JL et al (1987) Functional desensitization of the isolated ß-adrenergic receptor by the ß-receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Aca Sci U S A 84:8879–8882

    Article  CAS  Google Scholar 

  22. Goodman OBJ et al (1996) ß-arrestin acts as a clathrin adaptor in endocytosis of the ß2-adrenergic receptor. Nature 383:447–450

    Article  CAS  PubMed  Google Scholar 

  23. Laporte SA et al (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A 96(7):3712–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Claing A et al (2001) beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem 276(45):42509–42513

    Article  CAS  PubMed  Google Scholar 

  25. Oakley RH et al (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275(22):17201–17210

    Article  CAS  PubMed  Google Scholar 

  26. Oakley RH et al (2001) Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*. J Biol Chem 276(22):19452–19460

    Article  CAS  PubMed  Google Scholar 

  27. Shenoy SK (2014) Arrestin interaction with E3 ubiquitin ligases and deubiquitinases: functional and therapeutic implications. Handb Exp Pharmacol 219:187–203

    Article  CAS  PubMed  Google Scholar 

  28. Shenoy SK, Lefkowitz RJ (2003) Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 278:14498–14506

    Article  CAS  PubMed  Google Scholar 

  29. Shenoy SK et al (2009) Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci U S A 106(16):6650–6655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shenoy SK et al (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor. J Biol Chem 283(32):22166–22176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhandari D et al (2007) Arrestin-2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. J Biol Chem 282(51):36971–36979

    Article  CAS  PubMed  Google Scholar 

  32. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8(11):1223–1234

    Article  CAS  PubMed  Google Scholar 

  33. Shukla AK et al (2010) Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 285(39):30115–30125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen W et al (2003) Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. Science 301(5638):1394–1397

    Article  CAS  PubMed  Google Scholar 

  35. McDonald PH et al (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290(5496):1574–1577

    Article  CAS  PubMed  Google Scholar 

  36. Scott MG et al (2006) Cooperative regulation of ERK activation and cell shape change by Filamin A and ß-arrestins. Mol Cell Biol 26:3432–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DeFea KA (2011) Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 23(4):621–629

    Article  CAS  PubMed  Google Scholar 

  38. Cameron RT, Baillie GS (2014) Arrestin regulation of small GTPases. Handb Exp Pharmacol 219:375–385

    Article  CAS  PubMed  Google Scholar 

  39. McGovern KW, DeFea KA (2014) Molecular mechanisms underlying beta-arrestin-dependent chemotaxis and actin-cytoskeletal reorganization. Handb Exp Pharmacol 219:341–359

    Article  CAS  PubMed  Google Scholar 

  40. Chavkin C, Schattauer SS, Levin JR (2014) Arrestin-mediated activation of p38 MAPK: molecular mechanisms and behavioral consequences. Handb Exp Pharmacol 219:281–292

    Article  CAS  PubMed  Google Scholar 

  41. Zhan X et al (2014) Arrestin-dependent activation of JNK family kinases. Handb Exp Pharmacol 219:259–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strungs EG, Luttrell LM (2014) Arrestin-dependent activation of ERK and Src family kinases. Handb Exp Pharmacol 219:225–257

    Article  CAS  PubMed  Google Scholar 

  43. Chen Q et al (2014) Self-association of arrestin family members. Handb Exp Pharmacol 219:205–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gurevich VV, Gurevich EV (2014) Extensive shape shifting underlies functional versatility of arrestins. Curr Opin Cell Biol 27:1–9

    Article  CAS  PubMed  Google Scholar 

  45. Kirchhausen T, Owen D, Harrison SC (2014) Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 6(5):a016725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Krupnick JG et al (1997) Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem 272(23):15011–15016

    Article  CAS  PubMed  Google Scholar 

  47. Owen DJ, Collins BM, Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20:153–191

    Article  CAS  PubMed  Google Scholar 

  48. Kim YM, Benovic JL (2002) Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 277(34):30760–30768

    Article  CAS  PubMed  Google Scholar 

  49. Burtey A et al (2007) The conserved isoleucine-valine-phenylalanine motif couples activation state and endocytic functions of beta-arrestins. Traffic 8(7):914–931

    Article  CAS  PubMed  Google Scholar 

  50. Goodman OB Jr et al (1997) Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J Biol Chem 272(23):15017–15022

    Article  CAS  PubMed  Google Scholar 

  51. Laporte SA et al (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275(30):23120–23126

    Article  CAS  PubMed  Google Scholar 

  52. Schmid EM et al (2006) Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol 4(9):e262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Edeling MA et al (2006) Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev Cell 10(3):329–342

    Article  CAS  PubMed  Google Scholar 

  54. Laporte SA et al (2002) {beta}-arrestin/AP-2 interaction in GPCR internalization: Identification of a {beta}-arrestin binding site in {beta}2-adaptin. J Biol Chem 2:2

    Google Scholar 

  55. Beautrait A et al (2017) A new inhibitor of the beta-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat Commun 8:15054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marion S et al (2007) N-terminal tyrosine modulation of the endocytic adaptor function of the beta-arrestins. J Biol Chem 282(26):18937–18944

    Article  CAS  PubMed  Google Scholar 

  57. Macia E et al (2012) Arf6 negatively controls the rapid recycling of the beta2 adrenergic receptor. J Cell Sci 125(Pt 17):4026–4035

    Article  CAS  PubMed  Google Scholar 

  58. Poupart ME et al (2007) ARF6 regulates angiotensin II type 1 receptor endocytosis by controlling the recruitment of AP-2 and clathrin. Cell Signal 19(11):2370–2378

    Article  CAS  PubMed  Google Scholar 

  59. Paleotti O et al (2005) The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem 280(22):21661–21666

    Article  CAS  PubMed  Google Scholar 

  60. Luttrell LM et al (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283(5402):655–661

    Article  CAS  PubMed  Google Scholar 

  61. DeFea KA et al (2000) The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex. Proc Natl Acad Sci U S A 97(20):11086–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Buchanan FG et al (2006) Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci U S A 103(5):1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller WE et al (2000) beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J Biol Chem 275(15):11312–11319

    Article  CAS  PubMed  Google Scholar 

  64. Fessart D et al (2007) Src-dependent phosphorylation of beta2-adaptin dissociates the beta-arrestin-AP-2 complex. J Cell Sci 120(Pt 10):1723–1732

    Article  CAS  PubMed  Google Scholar 

  65. Zimmerman B et al (2009) c-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway. Cell Signal 21(1):103–110

    Article  CAS  PubMed  Google Scholar 

  66. Penela P et al (2001) Beta-arrestin- and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J 20(18):5129–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang SH, Sharrocks AD, Whitmarsh AJ (2013) MAP kinase signalling cascades and transcriptional regulation. Gene 513(1):1–13

    Article  CAS  PubMed  Google Scholar 

  68. DeFea KA et al (2000) beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148(6):1267–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luttrell LM et al (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A 98(5):2449–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. DeWire SM et al (2008) Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem 283(16):10611–10620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song X et al (2009) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284(1):685–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Coffa S et al (2011) A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 50(32):6951–6958

    Article  CAS  PubMed  Google Scholar 

  73. Meng D et al (2009) MEK1 binds directly to betaarrestin1, influencing both its phosphorylation by ERK and the timing of its isoprenaline-stimulated internalization. J Biol Chem 284(17):11425–11435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hanson SM et al (2007) Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol 368(2):375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller WE et al (2001) Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem 276(30):27770–27777

    Article  CAS  PubMed  Google Scholar 

  76. Guo C, Whitmarsh AJ (2008) The beta-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. J Biol Chem 283(23):15903–15911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scott MG et al (2002) Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 277(40):37693–37701

    Article  CAS  PubMed  Google Scholar 

  78. Zhan X et al (2014) Arrestin-3 binds the MAP kinase JNK3alpha2 via multiple sites on both domains. Cell Signal 26(4):766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhan X et al (2016) Peptide mini-scaffold facilitates JNK3 activation in cells. Sci Rep 6:21025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Willoughby EA, Collins MK (2005) Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein beta-arrestin 2. J Biol Chem 280(27):25651–25658

    Article  CAS  PubMed  Google Scholar 

  81. Sun Y et al (2002) Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277:49212–49219

    Article  CAS  PubMed  Google Scholar 

  82. McLaughlin NJ et al (2006) Platelet-activating factor-induced clathrin-mediated endocytosis requires beta-arrestin-1 recruitment and activation of the p38 MAPK signalosome at the plasma membrane for actin bundle formation. J Immunol 176(11):7039–7050

    Article  CAS  PubMed  Google Scholar 

  83. Perry SJ et al (2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298(5594):834–836

    Article  CAS  PubMed  Google Scholar 

  84. Baillie GS et al (2007) Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays. Biochem J 404(1):71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nelson CD et al (2007) Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science 315(5812):663–666

    Article  CAS  PubMed  Google Scholar 

  86. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Povsic TJ, Kohout TA, Lefkowitz RJ (2003) Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem 278(51):51334–51339

    Article  CAS  PubMed  Google Scholar 

  88. Wang P et al (2007) Differential regulation of class IA phosphoinositide 3-kinase catalytic subunits p110 alpha and beta by protease-activated receptor 2 and beta-arrestins. Biochem J 408(2):221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang P, DeFea KA (2006) Protease-activated receptor-2 simultaneously directs beta-arrestin-1-dependent inhibition and Galphaq-dependent activation of phosphatidylinositol 3-kinase. Biochemistry 45(31):9374–9385

    Article  CAS  PubMed  Google Scholar 

  90. Goel R et al (2002) alpha-Thrombin induces rapid and sustained Akt phosphorylation by beta-arrestin1-dependent and -independent mechanisms, and only the sustained Akt phosphorylation is essential for G1 phase progression. J Biol Chem 277(21):18640–18648

    Article  CAS  PubMed  Google Scholar 

  91. Lodeiro M et al (2009) c-Src regulates Akt signaling in response to ghrelin via beta-arrestin signaling-independent and -dependent mechanisms. PLoS One 4(3):e4686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Luan B et al (2009) Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature 457(7233):1146–1149

    Article  CAS  PubMed  Google Scholar 

  93. Beaulieu JM et al (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122(2):261–273

    Article  CAS  PubMed  Google Scholar 

  94. Beaulieu JM et al (2008) A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132(1):125–136

    Article  CAS  PubMed  Google Scholar 

  95. Kendall RT et al (2011) The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network. J Biol Chem 286(22):19880–19891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13(5):283–296

    Article  CAS  PubMed  Google Scholar 

  97. Lima-Fernandes E et al (2011) Distinct functional outputs of PTEN signalling are controlled by dynamic association with beta-arrestins. EMBO J 30(13):2557–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Javadi A et al (2017) PTEN controls glandular morphogenesis through a juxtamembrane beta-Arrestin1/ARHGAP21 scaffolding complex. elife 6:e24578

    Article  PubMed  PubMed Central  Google Scholar 

  99. Palmitessa A, Benovic JL (2010) Arrestin and the multi-PDZ domain-containing protein MPZ-1 interact with phosphatase and tensin homolog (PTEN) and regulate Caenorhabditis elegans longevity. J Biol Chem 285(20):15187–15200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3(3):221–227

    Article  CAS  PubMed  Google Scholar 

  101. Gao H et al (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 14(3):303–317

    Article  CAS  PubMed  Google Scholar 

  102. Witherow DS et al (2004) beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc Natl Acad Sci U S A 101(23):8603–8607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang Y et al (2006) Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 7(2):139–147

    Article  CAS  PubMed  Google Scholar 

  104. Sun J, Lin X (2008) Beta-arrestin 2 is required for lysophosphatidic acid-induced NF-kappaB activation. Proc Natl Acad Sci U S A 105(44):17085–17090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoeppner CZ, Cheng N, Ye RD (2012) Identification of a nuclear localization sequence in beta-arrestin-1 and its functional implications. J Biol Chem 287(12):8932–8943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cianfrocca R et al (2014) beta-Arrestin 1 is required for endothelin-1-induced NF-kappaB activation in ovarian cancer cells. Life Sci 118(2):179–184

    Article  CAS  PubMed  Google Scholar 

  107. Shenoy SK et al (2001) Regulation of receptor fate by ubiquitination of activated beta 2- adrenergic receptor and beta-arrestin. Science 294(5545):1307–1313

    Article  CAS  PubMed  Google Scholar 

  108. Shenoy SK et al (2007) Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J Biol Chem 282(40):29549–29562

    Article  CAS  PubMed  Google Scholar 

  109. Wang P et al (2003) Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem 278(8):6363–6370

    Article  CAS  PubMed  Google Scholar 

  110. Wang P et al (2003) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 278:11648–11653

    Article  CAS  PubMed  Google Scholar 

  111. Boularan C et al (2007) beta-arrestin 2 oligomerization controls the Mdm2-dependent inhibition of p53. Proc Natl Acad Sci U S A 104(46):18061–18066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hara MR et al (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477(7364):349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kitada T et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  CAS  PubMed  Google Scholar 

  114. Ahmed MR et al (2011) Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 50(18):3749–3763

    Article  CAS  PubMed  Google Scholar 

  115. Simonin A, Fuster D (2010) Nedd4-1 and beta-arrestin-1 are key regulators of Na+/H+ exchanger 1 ubiquitylation, endocytosis, and function. J Biol Chem 285(49):38293–38303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bhattacharya M et al (2002) Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol 4(8):547–555

    Article  CAS  PubMed  Google Scholar 

  117. Li TT et al (2009) Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells. Mol Cancer Res 7(7):1064–1077

    Article  CAS  PubMed  Google Scholar 

  118. Barnes WG et al (2005) beta-Arrestin 1 and Galphaq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J Biol Chem 280(9):8041–8050

    Article  CAS  PubMed  Google Scholar 

  119. Anthony DF et al (2011) beta-Arrestin 1 inhibits the GTPase-activating protein function of ARHGAP21, promoting activation of RhoA following angiotensin II type 1A receptor stimulation. Mol Cell Biol 31(5):1066–1075

    Article  CAS  PubMed  Google Scholar 

  120. Ma X et al (2012) Acute activation of beta2-adrenergic receptor regulates focal adhesions through betaArrestin2- and p115RhoGEF protein-mediated activation of RhoA. J Biol Chem 287(23):18925–18936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zoudilova M et al (2007) Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282(28):20634–20646

    Article  CAS  PubMed  Google Scholar 

  122. Zoudilova M et al (2010) beta-Arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem 285(19):14318–14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pontrello CG et al (2012) Cofilin under control of beta-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proc Natl Acad Sci U S A 109(7):E442–E451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mittal N et al (2013) Select G-protein-coupled receptors modulate agonist-induced signaling via a ROCK, LIMK, and beta-arrestin 1 pathway. Cell Rep 5(4):1010–1021

    Article  CAS  PubMed  Google Scholar 

  125. Storez H et al (2005) Homo- and hetero-oligomerization of beta-arrestins in living cells. J Biol Chem 280(48):40210–40215

    Article  CAS  PubMed  Google Scholar 

  126. Kang J et al (2005) A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123(5):833–847

    Article  CAS  PubMed  Google Scholar 

  127. Yue R et al (2009) Beta-arrestin1 regulates zebrafish hematopoiesis through binding to YY1 and relieving polycomb group repression. Cell 139(3):535–546

    Article  CAS  PubMed  Google Scholar 

  128. Rosano L et al (2013) beta-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced beta-catenin signaling. Oncogene 32(42):5066–5077

    Article  CAS  PubMed  Google Scholar 

  129. Zhuang LN et al (2011) Beta-arrestin-1 protein represses adipogenesis and inflammatory responses through its interaction with peroxisome proliferator-activated receptor-gamma (PPARgamma). J Biol Chem 286(32):28403–28413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Purayil HT et al (2015) Arrestin2 modulates androgen receptor activation. Oncogene 34(24):3144–3151

    Article  CAS  PubMed  Google Scholar 

  131. Lakshmikanthan V et al (2009) Identification of betaArrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proc Natl Acad Sci U S A 106(23):9379–9384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shenoy SK et al (2012) beta-arrestin1 mediates metastatic growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene 31(3):282–292

    Article  CAS  PubMed  Google Scholar 

  133. Cianfrocca R et al (2016) Nuclear beta-arrestin1 is a critical cofactor of hypoxia-inducible factor-1alpha signaling in endothelin-1-induced ovarian tumor progression. Oncotarget 7(14):17790–17804

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zecchini V et al (2014) Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer. EMBO J 33(12):1365–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gaidarov I et al (1999) Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J 18(4):871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hanson SM et al (2008) Opposing effects of inositol hexakisphosphate on rod arrestin and arrestin2 self-association. Biochemistry 47(3):1070–1075

    Article  CAS  PubMed  Google Scholar 

  137. Milano SK et al (2006) Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J Biol Chem 81:9812–9823

    Article  CAS  Google Scholar 

  138. Chen Q et al (2017) Structural basis of arrestin-3 activation and signaling. Nat Commun 8(1):1427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Xiao K et al (2004) Activation-dependent conformational changes in {beta}-arrestin 2. J Biol Chem 279(53):55744–55753

    Article  CAS  PubMed  Google Scholar 

  140. Nobles KN et al (2007) The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and −2. J Biol Chem 282(29):21370–21381

    Article  CAS  PubMed  Google Scholar 

  141. Shukla AK et al (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(7447):137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cahill TJ 3rd et al (2017) Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc Natl Acad Sci U S A 114(10):2562–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kumari P et al (2017) Core engagement with beta-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol Biol Cell 28(8):1003–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ranjan R et al (2017) Novel Structural Insights into GPCR-beta-Arrestin Interaction and Signaling. Trends Cell Biol 27(11):851–862

    Article  CAS  PubMed  Google Scholar 

  145. Thomsen ARB et al (2016) GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166(4):907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Charest PG, Terrillon S, Bouvier M (2005) Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET. EMBO Rep 6(4):334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nuber S et al (2016) beta-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531(7596):661–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee MH et al (2016) The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature 531(7596):665–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Eichel K, Jullie D, von Zastrow M (2016) beta-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol 18(3):303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Reiter E et al (2012) Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197

    Article  CAS  PubMed  Google Scholar 

  151. Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17(4):243–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ahn S et al (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279(34):35518–35525

    Article  CAS  PubMed  Google Scholar 

  153. Zimmerman B et al (2012) Differential beta-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Sci Signal 5(221):ra33

    Article  PubMed  Google Scholar 

  154. Violin JD et al (2010) Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335(3):572–579

    Article  CAS  PubMed  Google Scholar 

  155. Boerrigter G et al (2011) Cardiorenal actions of TRV120027, a novel ss-arrestin-biased ligand at the angiotensin II type I receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ Heart Fail 4(6):770–778

    Article  CAS  PubMed  Google Scholar 

  156. Boerrigter G et al (2012) TRV120027, a novel beta-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ Heart Fail 5(5):627–634

    Article  CAS  PubMed  Google Scholar 

  157. Pang PS et al (2017) Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). Eur Heart J 38(30):2364–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Luttrell LM, Kenakin TP (2011) Refining efficacy: allosterism and bias in G protein-coupled receptor signaling. Methods Mol Biol 756:3–35

    Article  CAS  PubMed  Google Scholar 

  159. Whalen EJ, Rajagopal S, Lefkowitz RJ (2011) Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med 17(3):126–139

    Article  CAS  PubMed  Google Scholar 

  160. Rankovic Z, Brust TF, Bohn LM (2016) Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett 26(2):241–250

    Article  CAS  PubMed  Google Scholar 

  161. O’Hayre M et al (2017) Genetic evidence that beta-arrestins are dispensable for the initiation of beta2-adrenergic receptor signaling to ERK. Sci Signal 10(484):eaal3395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Grundmann M et al (2018) Lack of beta-arrestin signaling in the absence of active G proteins. Nat Commun 9(1):341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Luttrell LM et al (2018) Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 11(549):eaat7650

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  164. Coureuil M et al (2010) Meningococcus Hijacks a beta2-adrenoceptor/beta-Arrestin pathway to cross brain microvasculature endothelium. Cell 143(7):1149–1160

    Article  CAS  PubMed  Google Scholar 

  165. Rakesh K et al (2010) beta-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal 3(125):ra46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Wu N et al (2006) Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins. J Mol Biol 364(5):955–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Scott MG et al (2002) Recruitment of activated G protein-coupled receptors to pre-existing clathrin-coated pits in living cells. J Biol Chem 277(5):3552–3559

    Article  CAS  PubMed  Google Scholar 

  168. Shenoy SK (2014) Deubiquitinases and their emerging roles in beta-arrestin-mediated signaling. Methods Enzymol 535:351–370

    Article  CAS  PubMed  Google Scholar 

  169. Tohgo A et al (2002) {beta}arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 98(change):9429–9436

    Article  CAS  Google Scholar 

  170. Lin FT et al (1999) Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. J Biol Chem 274(23):15971–15974

    Article  CAS  PubMed  Google Scholar 

  171. DeFea KA (2007) Stop that cell! Beta-arrestin-dependent chemotaxis: a tale of localized actin assembly and receptor desensitization. Annu Rev Physiol 69:535–560

    Article  CAS  PubMed  Google Scholar 

  172. Ge L et al (2004) Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem 279(53):55419–55424

    Article  CAS  PubMed  Google Scholar 

  173. Cleghorn WM et al (2015) Arrestins regulate cell spreading and motility via focal adhesion dynamics. Mol Biol Cell 26(4):622–635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Molla-Herman A et al (2008) Targeting of beta-arrestin2 to the centrosome and primary cilium: role in cell proliferation control. PLoS One 3(11):e3728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Kovacs JJ et al (2008) Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320(5884):1777–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mick DU et al (2015) Proteomics of primary cilia by proximity labeling. Dev Cell 35(4):497–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pal K et al (2016) Smoothened determines beta-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol 212(7):861–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Green JA et al (2016) Recruitment of beta-arrestin into neuronal cilia modulates somatostatin receptor subtype 3 ciliary localization. Mol Cell Biol 36(1):223–235

    CAS  PubMed  Google Scholar 

  179. Nager AR et al (2017) An actin network dispatches ciliary GPCRs into extracellular vesicles to modulate signaling. Cell 168(1-2):252–263 e14

    Article  CAS  PubMed  Google Scholar 

  180. Kook S et al (2014) Caspase-cleaved arrestin-2 and BID cooperatively facilitate cytochrome C release and cell death. Cell Death Differ 21(1):172–184

    Article  CAS  PubMed  Google Scholar 

  181. Oakley RH, Revollo J, Cidlowski JA (2012) Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors. Proc Natl Acad Sci U S A 109(43):17591–17596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li J et al (2018) NF-kappaB directly regulates beta-arrestin-1 expression and forms a negative feedback circuit in TNF-alpha-induced cell death. FASEB J 32(8):4096–4106. p. fj201700642RRR

    Article  CAS  PubMed  Google Scholar 

  183. Kraemer A et al (2013) Cell survival following radiation exposure requires miR-525-3p mediated suppression of ARRB1 and TXN1. PLoS One 8(10):e77484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang J et al (2016) miR-365 targets beta-arrestin 2 to reverse morphine tolerance in rats. Sci Rep 6:38285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bohn LM et al (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286(5449):2495–2498

    Article  CAS  PubMed  Google Scholar 

  186. Sang W et al (2016) MiR-150 impairs inflammatory cytokine production by targeting ARRB-2 after blocking CD28/B7 costimulatory pathway. Immunol Lett 172:1–10

    Article  CAS  PubMed  Google Scholar 

  187. Zhao J et al (2014) beta-arrestin2/miR-155/GSK3beta regulates transition of 5′-azacytizine-induced Sca-1-positive cells to cardiomyocytes. J Cell Mol Med 18(8):1562–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Barthet G et al (2009) Beta-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. EMBO J 28(18):2706–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lin FT et al (2002) Phosphorylation of beta-arrestin2 regulates its function in internalization of beta(2)-adrenergic receptors. Biochemistry 41(34):10692–10699

    Article  CAS  PubMed  Google Scholar 

  190. Kim YM et al (2002) Regulation of arrestin-3 phosphorylation by casein kinase II. J Biol Chem 277(19):16837–16846

    Article  CAS  PubMed  Google Scholar 

  191. Cassier E et al (2017) Phosphorylation of beta-arrestin2 at Thr383 by MEK underlies beta-arrestin-dependent activation of Erk1/2 by GPCRs. elife 6:e23777

    Article  PubMed  PubMed Central  Google Scholar 

  192. Paradis JS et al (2015) Receptor sequestration in response to beta-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression. Proc Natl Acad Sci U S A 112(37):E5160–E5168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Khoury E et al (2014) Differential regulation of endosomal GPCR/beta-arrestin complexes and trafficking by MAPK. J Biol Chem 289(34):23302–23317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32(9):521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shenoy SK, Lefkowitz RJ (2005) Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem 280(15):15315–15324

    Article  CAS  PubMed  Google Scholar 

  196. Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385

    Article  CAS  PubMed  Google Scholar 

  197. Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276(16):12654–12659

    Article  CAS  PubMed  Google Scholar 

  198. Wyatt D et al (2011) Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking. J Biol Chem 286(5):3884–3893

    Article  CAS  PubMed  Google Scholar 

  199. Xiao N et al (2015) SUMOylation attenuates human beta-arrestin 2 inhibition of IL-1R/TRAF6 signaling. J Biol Chem 290(4):1927–1935

    Article  CAS  PubMed  Google Scholar 

  200. Ozawa K et al (2008) S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 31(3):395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yan B et al (2011) Prolyl hydroxylase 2: a novel regulator of beta2 -adrenoceptor internalization. J Cell Mol Med 15(12):2712–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Min J, Defea K (2011) beta-arrestin-dependent actin reorganization: bringing the right players together at the leading edge. Mol Pharmacol 80(5):760–768

    Article  CAS  PubMed  Google Scholar 

  203. Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534

    Article  CAS  PubMed  Google Scholar 

  204. Schmid CL, Bohn LM (2009) Physiological and pharmacological implications of beta-arrestin regulation. Pharmacol Ther 121(3):285–293

    Article  CAS  PubMed  Google Scholar 

  205. Kohout TA et al (2001) beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci U S A 98(4):1601–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhang M et al (2011) Disruption of beta-arrestins blocks glucocorticoid receptor and severely retards lung and liver development in mice. Mech Dev 128(7-10):368–375

    Article  CAS  PubMed  Google Scholar 

  207. Bohn LM et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408(6813):720–723

    Article  CAS  PubMed  Google Scholar 

  208. Raehal KM, Walker JK, Bohn LM (2005) Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther 314(3):1195–1201

    Article  CAS  PubMed  Google Scholar 

  209. Conner DA et al (1997) beta-Arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ Res 81(6):1021–1026

    Article  CAS  PubMed  Google Scholar 

  210. Fong AM et al (2002) Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A 99(11):7478–7483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Walker JK et al (2003) Beta-arrestin-2 regulates the development of allergic asthma. J Clin Invest 112(4):566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhuang LN et al (2011) Beta-arrestin-1 protein represses diet-induced obesity. J Biol Chem 286(32):28396–28402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ravier MA et al (2014) beta-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice. Diabetologia 57(3):532–541

    Article  CAS  PubMed  Google Scholar 

  214. Zhu L et al (2017) beta-arrestin-2 is an essential regulator of pancreatic beta-cell function under physiological and pathophysiological conditions. Nat Commun 8:14295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Urs NM et al (2015) Targeting beta-arrestin2 in the treatment of L-DOPA-induced dyskinesia in Parkinson’s disease. Proc Natl Acad Sci U S A 112(19):E2517–E2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zou L et al (2008) Rapid xenograft tumor progression in beta-arrestin1 transgenic mice due to enhanced tumor angiogenesis. FASEB J 22(2):355–364

    Article  CAS  PubMed  Google Scholar 

  217. Raghuwanshi SK et al (2008) Depletion of beta-arrestin-2 promotes tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 180(8):5699–5706

    Article  CAS  PubMed  Google Scholar 

  218. Bonnans C et al (2012) Essential requirement for beta-arrestin2 in mouse intestinal tumors with elevated Wnt signaling. Proc Natl Acad Sci U S A 109(8):3047–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chaturvedi M et al (2018) Emerging paradigm of intracellular targeting of G protein-coupled receptors. Trends Biochem Sci 43(7):533–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the group of Mark G.H. Scott is supported by the Fondation ARC pour la Recherche sur le Cancer, Ligue Contre le Cancer (comité de L’Oise), France-Canada Research Foundation, the Who am I? laboratory of excellence (grant ANR-11-LABX-0071) funded by the “Investments for the Future” program operated by the French National Research Agency (grant ANR-11-IDEX-0005-01), CNRS, and INSERM. Work in the Laporte laboratory is supported by Canadian Institutes of Health Research grants (MOP-74603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stéphane A. Laporte or Mark G. H. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Laporte, S.A., Scott, M.G.H. (2019). β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. In: Scott, M., Laporte, S. (eds) Beta-Arrestins. Methods in Molecular Biology, vol 1957. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9158-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9158-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9157-0

  • Online ISBN: 978-1-4939-9158-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics