Skip to main content

Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors

  • Protocol
Gene Therapy for Neurological Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1382))

Abstract

Gene delivery using recombinant adeno-associated virus (rAAV) has emerged to the forefront demonstrating safe and effective phenotypic correction of diverse diseases including hemophilia B and Leber’s congenital amaurosis. In addition to rAAV’s high efficiency of transduction and the capacity for long-term transgene expression, the safety profile of rAAV remains unsoiled in humans with no deleterious vector-related consequences observed thus far. Despite these favorable attributes, rAAV vectors have a major disadvantage preventing widespread therapeutic applications; as the AAV capsid is the smallest described to date, it cannot package “large” genomes. Currently, the packaging capacity of rAAV has yet to be definitively defined but is approximately 5 kb, which has served as a limitation for large gene transfer. There are two main approaches that have been developed to overcome this limitation, split AAV vectors, and fragment AAV (fAAV) genome reassembly (Hirsch et al., Mol Ther 18(1):6–8, 2010). Split rAAV vector applications were developed based upon the finding that rAAV genomes naturally concatemerize in the cell post-transduction and are substrates for enhanced homologous recombination (HR) (Hirsch et al., Mol Ther 18(1):6–8, 2010; Duan et al., J Virol 73(1):161–169, 1999; Duan et al., J Virol 72(11):8568–8577, 1998; Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002). This method involves “splitting” the large transgene into two separate vectors and upon co-transduction, intracellular large gene reconstruction via vector genome concatemerization occurs via HR or nonhomologous end joining (NHEJ). Within the split rAAV approaches there currently exist three strategies: overlapping, trans-splicing, and hybrid trans-splicing (Duan et al., Mol Ther 4(4):383–391, 2001; Halbert et al., Nat Biotechnol 20(7):697–701, 2002; Ghosh et al., Mol Ther 16(1):124–130, 2008; Ghosh et al., Mol Ther 15(4):750–755, 2007). The other major strategy for AAV-mediated large gene delivery is the use of fragment AAV (fAAV) (Dong et al., Mol Ther 18(1):87–92, 2010; Hirsch et al., Mol Ther 21(12):2205–2216, 2013; Lai et al., Mol Ther 18(1):75–79, 2010; Wu et al., Mol Ther 18(1):80–86, 2010). This strategy developed following the observation that the attempted encapsidation of transgenic cassettes exceeding the packaging capacity of the AAV capsid results in the packaging of heterogeneous single-strand genome fragments (<5 kb) of both polarities (Dong et al., Mol Ther 18(1):87–92, 2010; Hirsch et al., Mol Ther 21(12):2205–2216, 2013; Lai et al., Mol Ther 18(1):75–79, 2010; Wu et al., Mol Ther 18(1):80–86, 2010). After transduction by multiple fAAV particles, the genome fragments can undergo opposite strand annealing, followed by host-mediated DNA synthesis to reconstruct the intended oversized genome within the cell. Although, there appears to be growing debate as to the most efficient method of rAAV-mediated large gene delivery, it remains possible that additional factors including the target tissue and the transgenomic sequence factor into the selection of a particular approach for a specific application (Duan et al., Mol Ther 4(4):383–391, 2001; Ghosh et al., Mol Ther 16(1):124–130, 2008; Hirsch et al., Mol Ther 21(12):2205–2216, 2013; Trapani et al., EMBO Mol Med 6(2):194–211, 2014; Ghosh et al., Hum Gene Ther 22(1):77–83, 2011). Herein we discuss the design, production, and verification of the leading rAAV large gene delivery strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch ML, Agbandje-McKenna M, Samulski RJ (2010) Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 18(1):6–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Duan D et al (1999) Formation of adeno-associated virus circular genomes is differentially regulated by adenovirus E4 ORF6 and E2a gene expression. J Virol 73(1):161–169

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Duan D et al (1998) Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 72(11):8568–8577

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Duan D, Yue Y, Engelhardt JF (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4(4):383–391

    Article  CAS  PubMed  Google Scholar 

  5. Halbert CL, Allen JM, Miller AD (2002) Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol 20(7):697–701

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh A et al (2008) A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 16(1):124–130

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh A et al (2007) Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 15(4):750–755

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18(1):87–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hirsch ML et al (2013) Oversized AAV transduction is mediated via a DNA-PKcs independent, Rad51C-dependent repair pathway. Mol Ther 21(12):2205–2216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lai Y, Yue Y, Duan D (2010) Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or = 8.2 kb. Mol Ther 18(1):75–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18(1):80–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Trapani I et al (2014) Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 6(2):194–211

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Ghosh A, Yue Y, Duan D (2011) Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther 22(1):77–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mitchell AM et al (2010) AAV’s anatomy: roadmap for optimizing vectors for translational success. Curr Gene Ther 10(5):319–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Samulski RJ et al (1982) Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci U S A 79(6):2077–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Samulski RJ et al (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 33(1):135–143

    Article  CAS  PubMed  Google Scholar 

  17. Samulski RJ, Chang LS, Shenk T (1989) Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 63(9):3822–3828

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Manno CS et al (2006) Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 12(3):342–347

    Article  CAS  PubMed  Google Scholar 

  19. Testa F et al (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 120(6):1283–1291

    Article  PubMed Central  PubMed  Google Scholar 

  20. Inagaki K et al (2007) The role of DNA-PKcs and artemis in opening viral DNA hairpin termini in various tissues in mice. J Virol 81(20):11304–11321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Choi VW, McCarty DM, Samulski RJ (2006) Host cell DNA repair pathways in adeno-associated viral genome processing. J Virol 80(21):10346–10356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Choi VW, Samulski RJ, McCarty DM (2005) Effects of adeno-associated virus DNA hairpin structure on recombination. J Virol 79(11):6801–6807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sun L, Li J, Xiao X (2000) Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 6(5):599–602

    Article  CAS  PubMed  Google Scholar 

  24. Hirsch ML et al (2009) AAV recombineering with single strand oligonucleotides. PLoS One 4(11), e7705

    Article  PubMed Central  PubMed  Google Scholar 

  25. Nakai H, Storm TA, Kay MA (2000) Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 18(5):527–532

    Article  CAS  PubMed  Google Scholar 

  26. Koo T et al (2014) Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther 25(2):98–108

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh A et al (2009) Systemic trans-splicing adeno-associated viral delivery efficiently transduces the heart of adult mdx mouse, a model for Duchenne muscular dystrophy. Hum Gene Ther 20(11):1319–1328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lai Y et al (2008) Design of trans-splicing adeno-associated viral vectors for Duchenne muscular dystrophy gene therapy. Methods Mol Biol 433:259–275

    Article  CAS  PubMed  Google Scholar 

  29. Reich SJ et al (2003) Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther 14(1):37–44

    Article  CAS  PubMed  Google Scholar 

  30. Xu Z et al (2004) Trans-splicing adeno-associated viral vector-mediated gene therapy is limited by the accumulation of spliced mRNA but not by dual vector coinfection efficiency. Hum Gene Ther 15(9):896–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lai Y et al (2006) Synthetic intron improves transduction efficiency of trans-splicing adeno-associated viral vectors. Hum Gene Ther 17(10):1036–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Yang J et al (1999) Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol 73(11):9468–9477

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Zhang Y, Duan D (2012) Novel mini-dystrophin gene dual adeno-associated virus vectors restore neuronal nitric oxide synthase expression at the sarcolemma. Hum Gene Ther 23(1):98–103

    Article  PubMed Central  PubMed  Google Scholar 

  34. Allocca M et al (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118(5):1955–1964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hermonat PL et al (1997) The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors. FEBS Lett 407(1):78–84

    Article  CAS  PubMed  Google Scholar 

  36. Grieger JC, Samulski RJ (2005) Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv Biochem Eng Biotechnol 99:119–145

    CAS  PubMed  Google Scholar 

  37. Wu J et al (2007) Self-complementary recombinant adeno-associated viral vectors: packaging capacity and the role of rep proteins in vector purity. Hum Gene Ther 18(2):171–182

    Article  CAS  PubMed  Google Scholar 

  38. Grose WE et al (2012) Homologous recombination mediates functional recovery of Dysferlin deficiency following AAV5 gene transfer. PLoS One 7(6), e39233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1(3):1412–1428

    Article  CAS  PubMed  Google Scholar 

  40. Hirsch ML, Samulski RJ (2014) AAV-mediated gene editing via double-strand break repair. Methods Mol Biol 1114:291–307

    Article  CAS  PubMed  Google Scholar 

  41. Lock M et al (2010) Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther 21(10):1259–1271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Jain Foundation and the NIH (RO1AR064369-01A1, R01AI072176-06A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Samulski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hirsch, M.L., Wolf, S.J., Samulski, R.J. (2016). Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors. In: Manfredsson, F. (eds) Gene Therapy for Neurological Disorders. Methods in Molecular Biology, vol 1382. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3271-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3271-9_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3270-2

  • Online ISBN: 978-1-4939-3271-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics