Skip to main content

Assessment of Conformational State Transitions of Class B GPCRs Using Molecular Dynamics

  • Protocol
  • First Online:
G Protein-Coupled Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1947))

Abstract

Class B G protein-coupled receptors (GPCRs) comprise a family of 15 peptide-binding members, which are crucial targets for endocrine, metabolic, and stress-related disorders. While their protein structures and dynamics remain largely unclear, computer modeling and simulations represent a promising means to help solve such puzzles. Herein, we present a basic introduction to the methodology of molecular dynamics (MD) simulations and two analytical methods to assess the conformational ensembles and transitions of Class B GPCRs, using our recent studies of the human pituitary adenylate cyclase activating polypeptide (PAC1) receptor as an example. From long MD simulations, conformational ensembles with different roles in ligand binding and receptor activation are sampled to establish four states identified as either “open” or “closed” for the PAC1 receptor. Next, the dynamical network can be applied to analyze the simulations and identify key features within each conformational ensemble, which help distinguish the ligand-bound states of the PAC1 receptor from the ligand-free one. Further, the Markov State Model has emerged as a key approach to construct the transition network and connect the GPCR ensembles, providing detailed information for the transition pathways and kinetics. For the ligand-free PAC1 receptor, the transitions within the closed states are near 10–30 times faster than the open-closed transitions, which is likely related to the activation mechanism of the receptor. Overall, long MD simulations and analyses are useful to assess conformational transitions for the Class B GPCRs and to gain mechanistic insight, which is difficult to obtain using other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein–coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923

    Article  CAS  PubMed  Google Scholar 

  2. Sakmar TP (2017) Introduction: G-protein coupled receptors. Chem Rev 117:1–3. https://doi.org/10.1021/acs.chemrev.6b00686

    Article  CAS  PubMed  Google Scholar 

  3. Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 166:4–17

    Article  CAS  Google Scholar 

  4. Culhane KJ, Liu Y, Cai Y, Yan EC (2015) Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Front Pharmacol 6:264

    Article  Google Scholar 

  5. Bortolato A, Dore AS, Hollenstein K, Tehan BG, Mason JS, Marshall FH (2014) Structure of Class B GPCRs: new horizons for drug discovery. Br J Pharmacol 171:3132–3145. https://doi.org/10.1111/bph.12689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang H, Qiao A, Yang D, Yang L, Dai A, de Graaf C, Reedtz-Runge S, Dharmarajan V, Zhang H, Han GW, Grant TD, Sierra RG, Weierstall U, Nelson G, Liu W, Wu Y, Ma L, Cai X, Lin G, Wu X, Geng Z, Dong Y, Song G, Griffin PR, Lau J, Cherezov V, Yang H, Hanson MA, Stevens RC, Zhao Q, Jiang H, Wang M-W, Wu B (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259–264. https://doi.org/10.1038/nature22363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jazayeri A, Rappas M, Brown AJH, Kean J, Errey JC, Robertson NJ, Fiez-Vandal C, Andrews SP, Congreve M, Bortolato A, Mason JS, Baig AH, Teobald I, Doré AS, Weir M, Cooke RM, Marshall FH (2017) Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature 546:254–258. https://doi.org/10.1038/nature22800. http://www.nature.com/nature/journal/v546/n7657/abs/nature22800.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Qiao A, Yang L, Van Eps N, Frederiksen KS, Yang D, Dai A, Cai X, Zhang H, Yi C, Cao C, He L, Yang H, Lau J, Ernst OP, Hanson MA, Stevens RC, Wang MW, Reedtz-Runge S, Jiang H, Zhao Q, Wu B (2018) Structure of the glucagon receptor in complex with a glucagon analogue. Nature 553:106–110. https://doi.org/10.1038/nature25153

    Article  CAS  PubMed  Google Scholar 

  9. Hoare SRJ (2005) Mechanisms of peptide and nonpeptide ligand binding to class B G-protein coupled receptors. Drug Discov Today 10:417–427. https://doi.org/10.1016/S1359-6446(05)03370-2

    Article  CAS  PubMed  Google Scholar 

  10. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10:47–60

    Article  CAS  Google Scholar 

  11. Millar RP, Newton CL (2010) The year in G protein-coupled receptor research. Mol Endocrinol 24:261–274. https://doi.org/10.1210/me.2009-0473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG (2011) Agonist-bound adenosine A(2A) receptor structures reveal common features of GPCR activation. Nature 474:521–525. https://doi.org/10.1038/nature10136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li JN, Jonsson AL, Beuming T, Shelley JC, Voth GA (2013) Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor. J Am Chem Soc 135:8749–8759. https://doi.org/10.1021/Ja404391q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu HF, Borhani DW, Shaw DE (2011) Activation mechanism of the beta(2)-adrenergic receptor. Proc Natl Acad Sci U S A 108:18684–18689. https://doi.org/10.1073/Pnas.1110499108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan SG, Hu ZQ, Filipek S, Vogel H (2015) W246(6.48) opens a gate for a continuous intrinsic water pathway during activation of the adenosine A(2A) receptor. Angew Chem Int Ed 54:556–559. https://doi.org/10.1002/Anie.201409679

    Article  CAS  Google Scholar 

  16. Liao C, Zhao X, Liu J, Schneebeli ST, Shelley JC, Li J (2017) Capturing the multiscale dynamics of membrane protein complexes with all-atom, mixed-resolution, and coarse-grained models. Phys Chem Chem Phys 19:9181–9188. https://doi.org/10.1039/C7CP00200A

    Article  CAS  PubMed  Google Scholar 

  17. Liao C, Zhao X, Brewer M, May V, Li J (2017) Conformational transitions of the pituitary adenylate cyclase-activating polypeptide receptor, a human class B GPCR. Sci Rep 7:5427. https://doi.org/10.1038/s41598-017-05815-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V, Wang C, Siu FY, Song G, Reedtz-Runge S, Pascal BD, Wu B, Potter CS, Zhou H, Griffin PR, Carragher B, Yang H, Wang MW, Stevens RC, Jiang H (2015) Conformational states of the full-length glucagon receptor. Nat Commun 6:7859. https://doi.org/10.1038/ncomms8859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kean J, Bortolato A, Hollenstein K, Marshall FH, Jazayeri A (2015) Conformational thermostabilisation of corticotropin releasing factor receptor 1. Sci Rep 5:11954. https://doi.org/10.1038/srep11954. https://www.nature.com/articles/srep11954#supplementary-information

    Article  PubMed  PubMed Central  Google Scholar 

  20. Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S, Liu K, Cai X, Dai A, Lin G, Liu D, Wu F, Wu Y, Zhao S, Ye L, Han GW, Lau J, Wu B, Hanson MA, Liu Z-J, Wang M-W, Stevens RC (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546:312. https://doi.org/10.1038/nature22378

    Article  CAS  PubMed  Google Scholar 

  21. Singh R, Ahalawat N, Murarka RK (2015) Activation of corticotropin-releasing factor 1 receptor: insights from molecular dynamics simulations. J Phys Chem B 119:2806–2817. https://doi.org/10.1021/Jp509814n

    Article  CAS  PubMed  Google Scholar 

  22. Woolley MJ, Reynolds CA, Simms J, Walker CS, Mobarec JC, Garelja ML, Conner AC, Poyner DR, Hay DL (2017) Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs. Biochem Pharmacol 142:96–110. https://doi.org/10.1016/j.bcp.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, Bank JA, Young C, Deneroff MM, Batson B, Bowers KJ, Chow E, Eastwood MP, Ierardi DJ, Klepeis JL, Kuskin JS, Larson RH, Lindorff-Larsen K, Maragakis P, Moraes MA, Piana S, Shan Y and Towles B (2009) Millisecond-scale molecular dynamics simulations on Anton. Proceedings of the conference on high performance computing networking, storage and analysis, ACM, Portland, Oregon, pp. 1–11

    Google Scholar 

  24. Voelz VA, Bowman GR, Beauchamp K, Pande VS (2010) Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J Am Chem Soc 132:1526. https://doi.org/10.1021/ja9090353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shelley MY, Selvan ME, Zhao J, Babin V, Liao C, Li J, Shelley JC (2017) A new mixed all-atom/coarse-grained model: application to melittin aggregation in aqueous solution. J Chem Theory Comput 13:3881–3897. https://doi.org/10.1021/acs.jctc.7b00071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao C, Zhang Z, Kale J, Andrews DW, Lin J, Li J (2016) Conformational heterogeneity of bax helix 9 dimer for apoptotic pore formation. Sci Rep 6:29502. https://doi.org/10.1038/srep29502. http://www.nature.com/articles/srep29502#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao C, Selvan ME, Zhao J, Slimovitch JL, Schneebeli ST, Shelley M, Shelley JC, Li J (2015) Melittin aggregation in aqueous solutions: insight from molecular dynamics simulations. J Phys Chem B 119:10390–10398. https://doi.org/10.1021/acs.jpcb.5b03254

    Article  CAS  PubMed  Google Scholar 

  28. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273. https://doi.org/10.1021/ct300400x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baker D, Agard DA (1994) Kinetics versus thermodynamics in protein folding. Biochemistry 33:7505–7509. https://doi.org/10.1021/bi00190a002

    Article  CAS  PubMed  Google Scholar 

  30. Earl DJ, Deem MW (2005) Parallel tempering: theory, applications, and new perspectives. Phys Chem Chem Phys 7:3910–3916

    Article  CAS  Google Scholar 

  31. Zhang C, Ma JP (2010) Enhanced sampling and applications in protein folding in explicit solvent. J Chem Phys 132. https://doi.org/10.1063/1.3435332.Artn 244101

    Google Scholar 

  32. Martin HSC, Jha S, Coveney PV (2014) Comparative analysis of nucleotide translocation through protein nanopores using steered molecular dynamics and an adaptive biasing force. J Comput Chem 35:692–702. https://doi.org/10.1002/jcc.23525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929. https://doi.org/10.1063/1.1755656

    Article  CAS  PubMed  Google Scholar 

  34. Pyrkosz AB, Eargle J, Sethi A, Luthey-Schulten Z (2010) Exit strategies for charged tRNA from GluRS. J Mol Biol 397:1350–1371. https://doi.org/10.1016/J.Jmb.2010.02.003

    Article  PubMed Central  Google Scholar 

  35. Alexander RW, Eargle J, Luthey-Schulten Z (2010) Experimental and computational determination of tRNA dynamics. FEBS Lett 584:376–386. https://doi.org/10.1016/J.Febslet.2009.11.061

    Article  CAS  PubMed  Google Scholar 

  36. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA: protein complexes. Proc Natl Acad Sci U S A 106:6620–6625. https://doi.org/10.1073/Pnas.0810961106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  38. Glykos NM (2006) Software news and updates. Carma: a molecular dynamics analysis program. J Comput Chem 27:1765–1768. https://doi.org/10.1002/jcc.20482

    Article  CAS  PubMed  Google Scholar 

  39. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99:7821

    Article  CAS  Google Scholar 

  40. Bowman GR, Huang XH, Pande VS (2009) Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49:197–201. https://doi.org/10.1016/j.ymeth.2009.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys 131:124101. https://doi.org/10.1063/1.3216567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chodera JD, Singhal N, Pande VS, Dill KA, Swope WC (2007) Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J Chem Phys 126:155101. https://doi.org/10.1063/1.2714538.Artn 155101

    Article  PubMed  Google Scholar 

  43. Chodera JD, Swope WC, Pitera JW, Dill KA (2006) Long-time protein folding dynamics from short-time molecular dynamics simulations. Multiscale Model Sim 5:1214–1226. https://doi.org/10.1137/06065146x

    Article  Google Scholar 

  44. Noé F, Fischer S (2008) Transition networks for modeling the kinetics of conformational change in macromolecules. Curr Opin Struct Biol 18:154–162. https://doi.org/10.1016/j.sbi.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  45. Singhal N, Snow CD, Pande VS (2004) Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. J Chem Phys 121:415–425. https://doi.org/10.1063/1.1738647

    Article  CAS  PubMed  Google Scholar 

  46. Prinz JH, Wu H, Sarich M, Keller B, Senne M, Held M, Chodera JD, Schutte C, Noe F (2011) Markov models of molecular kinetics: generation and validation. J Chem Phys 134:174105. https://doi.org/10.1063/1.3565032.Artn 174105

    Article  PubMed  Google Scholar 

  47. Lane TJ, Bowman GR, Beauchamp K, Voelz VA, Pande VS (2011) Markov state model reveals folding and functional dynamics in ultra-long MD trajectories. J Am Chem Soc 133:18413–18419. https://doi.org/10.1021/ja207470h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Noe F, Schutte C, Vanden-Eijnden E, Reich L, Weikl TR (2009) Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc Natl Acad Sci U S A 106:19011–19016. https://doi.org/10.1073/pnas.0905466106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pande VS, Beauchamp K, Bowman GR (2010) Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52:99–105. https://doi.org/10.1016/j.ymeth.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Noe F, Horenko I, Schutte C, Smith JC (2007) Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J Chem Phys 126:155102. https://doi.org/10.1063/1.2714539

    Article  CAS  PubMed  Google Scholar 

  51. Weinan E, Vanden-Eijnden E (2006) Towards a theory of transition paths. J Stat Phys 123:503–523. https://doi.org/10.1007/s10955-005-9003-9

    Article  Google Scholar 

  52. Berezhkovskii A, Hummer G, Szabo A (2009) Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J Chem Phys 130:205102. https://doi.org/10.1063/1.3139063.Artn 205102

    Article  PubMed  PubMed Central  Google Scholar 

  53. Metzner P, Schutte C, Vanden-Eijnden E (2009) Transition path theory for Markov jump processes. Multiscale Mod Sim 7:1192–1219. https://doi.org/10.1137/070699500

    Article  CAS  Google Scholar 

  54. Du R, Pande VS, Grosberg AY, Tanaka T, Shakhnovich ES (1998) On the transition coordinate for protein folding. J Chem Phys 108:334–350. https://doi.org/10.1063/1.475393

    Article  CAS  Google Scholar 

  55. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318. https://doi.org/10.1146/annurev.physchem.53.082301.113146

    Article  CAS  PubMed  Google Scholar 

  56. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Toda M, Kubo R, Saitō N, Hashitsume N (1991) Statistical physics II: nonequilibrium statistical mechanics. Springer Science & Business Media, Berlin

    Google Scholar 

  58. Martyna GJ, DJ T, Klein ML (1994) Constant-pressure molecular-dynamics algorithms. J Chem Phys 101:4177–4189. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  59. Feller SE, Zhang YH, Pastor RW, Brooks BR (1995) Constant-pressure molecular-dynamics simulation - the Langevin piston method. J Chem Phys 103:4613–4621. https://doi.org/10.1063/1.470648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computational resources were provided by Anton (PSC, NIH P41GM103712-S1), Stampede (XSEDE, NSF ACI-1053575), and Vermont Advanced Computing Core (VACC). J.L. and V.M. thank the UVM REACH grant and the National Institutes of Health (NIH) under Award Number R01GM129431 for the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liao, C., May, V., Li, J. (2019). Assessment of Conformational State Transitions of Class B GPCRs Using Molecular Dynamics. In: Tiberi, M. (eds) G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, vol 1947. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9121-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9121-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9120-4

  • Online ISBN: 978-1-4939-9121-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics