Skip to main content

Analysis of Developing Rice Grain Transcriptome Using the Agilent Microarray Platform

  • Protocol
  • First Online:
Rice Grain Quality

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1892))

Abstract

Transcriptome analysis reflects the status quo of transcribed genetic code present in the form of mRNA, which helps to infer biological processes and unravel metabolic status. Despite the increasing adoption of RNA-Seq technique in recent years, transcriptome analysis using the microarray platform remains the gold standard technique, which offers a simpler, more cost-effective, and efficient method for high-throughput gene expression profiling. In this chapter, we described a streamlined transcriptomic analyses pipeline employed to study developing rice grains that can also be applied to other tissue samples and species. We described a novel RNA extraction method that obviates the problem introduced by high-starch content during rice grain development that usually leads to reduction in RNA yield and quality. The detailed procedure of microarray analysis involved in cDNA synthesis, cRNA labeling, microarray hybridization, slide scanning, feature extraction to QC validation has been described. The description of a newly developed Indica- and Japonica-specific microarray slides developed from the genome information of subpopulation to study gene expression of 60,000 genes has been highlighted. The downstream bioinformatics analyses including expression QTL mapping and gene regulatory network analyses were mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  Google Scholar 

  2. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  Google Scholar 

  3. Law CW, Chen YS, Shi W, Smyth GK (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15(2):R29

    Article  Google Scholar 

  4. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao YJ, Moore RA, Hirst M, Marra MA, Jones SJM, Hoodless PA, Birol I (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7(11):U909–U962

    Article  Google Scholar 

  5. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2014) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks (vol 7, p 562, 2012). Nat Protoc 9(10):2513

    Article  CAS  Google Scholar 

  6. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–U130

    Article  CAS  Google Scholar 

  7. Bottomly D, Walter NAR, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney M, McWeeney SK, Hitzemann R (2011) Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS One 6(3):e17820

    Article  CAS  Google Scholar 

  8. Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, Menzel C, Chen W, Li YX, Zeng R, Khaitovich P (2009) Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 10:161

    Article  Google Scholar 

  9. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517

    Article  CAS  Google Scholar 

  10. Sirbu A, Kerr G, Crane M, Ruskin HJ (2012) RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering. PLoS One 7(12):e50986

    Article  CAS  Google Scholar 

  11. Xu X, Zhang YH, Williams J, Antoniou E, McCombie WR, Wu S, Zhu W, Davidson NO, Denoya P, Li E (2013) Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets. Bmc Bioinformatics 14:S1

    Article  Google Scholar 

  12. Zhang W, Ferguson J, Ng SM, Hui K, Goh G, Lin AP, Esplugues E, Flavell RA, Abraham C, Zhao HY, Cho JH (2012) Effector CD4+T cell expression signatures and immune-mediated disease associated genes. PLoS One 7(6):e38510

    Article  CAS  Google Scholar 

  13. Zhao SR, Fung-Leung WP, Bittner A, Ngo K, Liu XJ (2014) Comparison of RNA-Seq and microarray in Transcriptome profiling of activated T cells. PLoS One 9(1):e78644

    Article  Google Scholar 

  14. Zhu T, Budworth P, Chen W, Provart N, Chang H-S, Guimil S, Su W, Estes B, Zou G, Wang X (2003) Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol J 1(1):59–70

    Article  CAS  Google Scholar 

  15. Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol 51(5):795–809. https://doi.org/10.1093/pcp/pcq034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X, Guo T, Wan X, Wang H, Zhu M, Li A, Su N, Shen Y, Mao B, Zhai H, Mao L, Wan J (2010) Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice. BMC Genomics 11:730. https://doi.org/10.1186/1471-2164-11-730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N (2010) Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomics 10(3):339–347

    Article  CAS  Google Scholar 

  18. Li H, Deng HW (2010) Systems genetics, bioinformatics and eQTL mapping. Genetica 138(9–10):915–924

    Article  Google Scholar 

  19. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17(7):388–391

    Article  CAS  Google Scholar 

  20. Jansen RC (2003) Studying complex biological systems using multifactorial perturbation. Nat Rev Genet 4(2):145–151

    Article  CAS  Google Scholar 

  21. Butardo VM Jr, Anacleto R, Parween S, Samson I, de Guzman K, Alhambra CM, Misra G, Sreenivasulu N (2017) Systems genetics identifies a novel regulatory domain of amylose synthesis. Plant Physiol 173(1):887–906. https://doi.org/10.1104/pp.16.01248

    Article  CAS  PubMed  Google Scholar 

  22. Sreenivasulu N, Sunkar R, Wobus U, Strickert M (2010) Array platforms and bioinformatics tools for the analysis of plant transcriptome in response to abiotic stress. Methods Mol Biol 639:71–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported under the CGIAR thematic area Global Rice Agri-Food System CRP, RICE, Stress-Tolerant Rice for Africa and South Asia (STRASA) Phase III funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito M. Butardo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Püffeld, M., Seiler, C., Kuhlmann, M., Sreenivasulu, N., Butardo, V.M. (2019). Analysis of Developing Rice Grain Transcriptome Using the Agilent Microarray Platform. In: Sreenivasulu, N. (eds) Rice Grain Quality. Methods in Molecular Biology, vol 1892. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8914-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8914-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8912-6

  • Online ISBN: 978-1-4939-8914-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics