Skip to main content

Array Platforms and Bioinformatics Tools for the Analysis of Plant Transcriptome in Response to Abiotic Stress

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 639))

Abstract

Current microarray technologies allow high-density in situ synthesis of oligonucleotides or ex situ spotting of target molecules (cDNA) for conducting genome-wide comparative gene expression profiling studies. The avalanche of available microarray gene expression data from model plant species covering cell-related, tissue-specific, and developmental events, as well as perturbations to a variety of environmental stimuli has triggered many activities regarding the development of adequate bioinformatics tools for the analysis of these complex data sets. In this chapter we summarize the technical issues of different microarray technologies, discuss the availability of bioinformatics tools, and present approaches to extract biologically meaningful knowledge. For case studies of abiotic stress transcriptome analysis we highlight the unprecedented opportunities provided by these high-throughput technologies to understand networks of regulatory and metabolic pathway responses of plant cells to the application of abiotic stress stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, P. and Pardee, A.B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  2. Kato, K. (1995) Description of the entire mRNA population by a 3' end cDNA fragment generated by class IIS restriction enzymes. Nucleic Acids Res 23, 3685–3690.

    Article  PubMed  CAS  Google Scholar 

  3. Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  PubMed  CAS  Google Scholar 

  4. Sreenivasulu, N., Sopory, S.K., and Kishor, P.B.K. (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388, 1–13.

    Article  PubMed  CAS  Google Scholar 

  5. Yamaguchi-Shinozaki, K. and Shinozaki, K. (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10, 88–94.

    Article  PubMed  CAS  Google Scholar 

  6. Bohnert, H.J., Gong, Q., Li, P., and Ma, S. (2006) Unraveling abiotic stress tolerance mechanisms-getting genomics going. Curr Opin Plant Biol 9, 180–188.

    Article  PubMed  CAS  Google Scholar 

  7. Hazen, S.P., Wu, Y., and Kreps, J.A. (2003) Gene expression profiling of plant responses to abiotic stress. Funct Integr Genomics 3, 105–111.

    Article  PubMed  CAS  Google Scholar 

  8. Berger, D.K., Crampton, B.G., Hein, I., and Vos, W. (2007) Screening of cDNA libraries on glass slide microarrays. Methods Mol Biol 382, 177–203.

    Article  PubMed  CAS  Google Scholar 

  9. Sreenivasulu N., Kishor, P.B.K., Varshney, R.K., and Altschmied, L. Mining functional information from cereal genomes - the utility of expressed sequence tags. Current Sci 83, 965–973.

    Google Scholar 

  10. Chou, C.C. and Peck, K. (2007) Design and fabrication of spotted long oligonucleotide microarrays for gene expression analysis. Methods Mol Biol 381, 213–225.

    Article  PubMed  CAS  Google Scholar 

  11. Lister, R., Gregory, B.D., and Ecker, J.R. (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12, 107–118.

    Article  PubMed  CAS  Google Scholar 

  12. Lescallett, J., Chicurel, M.E., Lipshutz, R., and Dalma-Weiszhausz, D.D. (2004) Monitoring eukaryotic gene expression using oligonucleotide microarrays. Methods Mol Biol 258, 71–94.

    PubMed  CAS  Google Scholar 

  13. Fodor, S.P., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251,767–773.

    Article  PubMed  CAS  Google Scholar 

  14. Shi, L., Reid, L.H., Jones, W.D., Shippy, R., Warrington, J.A., Baker, S.C., et al. (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24, 1151–1161.

    Article  PubMed  CAS  Google Scholar 

  15. Barrett, T. and Edgar, R. (2006) Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 411, 352–369.

    Article  PubMed  CAS  Google Scholar 

  16. Durinck, S. (2008) Pre-processing of microarray data and analysis of differential expression. Methods Mol Biol 452, 89–110.

    Article  PubMed  CAS  Google Scholar 

  17. Bolstad, B., Irizarry, R., Astrand, M., and Speed, T. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193.

    Article  PubMed  CAS  Google Scholar 

  18. Knudsen, S. (2004) Guide to Analysis of DNA Microarray Data, Wiley.

    Google Scholar 

  19. Irizarry, R., Bolstad, B., Collin, F., Cope, L., Hobbs, B., and Speed, T. (2003) Summaries of Affymetrix GeneChip probe level data. Nucl Acids Res 31, e15.

    Article  PubMed  Google Scholar 

  20. Durbin, B., Hardin, J., Hawkins, D., and Rocke, D. (2002) A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 18, S105–110.

    Article  Google Scholar 

  21. Lee, J. and Verleysen, M. (2007) Nonlinear Dimension Reduction, Springer.

    Google Scholar 

  22. Azuaje, F. and Dopazo, J. (2005) Data Analysis and Visualization in Genomics and Proteomics, Wiley, Chichester, England.

    Google Scholar 

  23. Yeung, K. and Ruzzo, W. (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17, 763–774.

    Article  PubMed  CAS  Google Scholar 

  24. Ultsch, A. and Kämpf, D. (2004) Knowledge discovery in DNA microarray data of cancer patients with emergent self organizing maps. In M. Verleysen (ed.), Proceedings of the European Symposium on Artificial Neural Networks (ESANN 2004). D-side Publications, Evere, Belgium, pp. 501–506.

    Google Scholar 

  25. Strickert, M., Sreenivasulu, N., Usadel, B., and Seiffert, U. (2007) Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue. BMC Bioinformatics 8(165).

    Article  PubMed  Google Scholar 

  26. de Hoon, M., Imoto, S., Nolan, J., and Miyano, S. (2004) Open source clustering software. Bioinformatics 20, 1453–1454.

    Article  PubMed  Google Scholar 

  27. Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95, 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  28. Cover, T. and Hart, P. (1967) Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21–27.

    Article  Google Scholar 

  29. McQuitty, L.L. (1966) Similarity analysis by reciprocal pairs for discrete and continuous data. Educational and Psychological Measurement 26, 825–831.

    Article  Google Scholar 

  30. Bar-Joseph, Z., Gifford, D., and Jaakkola, T. (2001) Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17, S22–29.

    Article  Google Scholar 

  31. Balasubramaniyan, R., Hüllermeier, E., Weskamp, N., and Kämper, J. (2005) Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  32. Cheng, Y. and Church, G. (2000) Biclustering of expression data. In P. Bourne et al. (ed.), Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000). AAAI Press, pp. 93–103.

    Google Scholar 

  33. Abdi, H. (2007) Bonferroni and Sidak corrections for multiple comparisons. In Encyclopedia of Measurement and Statistics (Salkind, N.J., ed.). Sage, Thousand Oaks, CA, pp. 1–9.

    Google Scholar 

  34. Mack, G.A. and Wolfe, D.A. (1981) K-Sample Rank Tests for Umbrella Alternatives. Journal of the American Statistical Association 76, 175–181.

    Article  Google Scholar 

  35. Leek, J., Monsen, E., Dabney, A., and Storey, J. (2006) EDGE: extraction and analysis of differential gene expression. Bioinformatics 22, 507–508.

    Article  PubMed  CAS  Google Scholar 

  36. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Müller, L., Rhee, S., and Stitt, M. (2004) MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939.

    Article  PubMed  CAS  Google Scholar 

  37. Fontana, P., Cestaro, A., Velasco, R., Formentin, E., and Toppo, S. (2009) Rapid annotation of anonymous sequences from genome projects using semantic similarities and a weighting scheme in gene ontology. PLoS ONE 4, e4619.

    Article  PubMed  Google Scholar 

  38. Spannagl, M., Noubibou, O., Haase, D., Yang, L., Gundlach, H., Hindemitt, T., Klee, K., Haberer, G., Schoof, H., and Mayer, K. F. X. (2007) MIPS Plants DB—plant database resource for integrative and comparative plant genome research. Nucleic Acids Res 35, Database issue D834–D840.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang, J.D. and Wiemann, S. (2009) KEGGgraph: a graph approach to KEGG PATHWAY in R and Bioconductor. Bioinformatics. 25(11), 1470–1471.

    Google Scholar 

  40. Sreenivasulu, N., Usadel, B., Winter, A., Radchuk, V., Scholz, U., Stein, N. et al. (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146, 1738–1758.

    Article  PubMed  CAS  Google Scholar 

  41. Usadel, B., Nagel, A., Steinhauser, D., Gibon, Y., Blasing, O., Redestig, H. et al. (2006) PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics 7, 1436–1452.

    Article  Google Scholar 

  42. Bell, G.W. and Lewitter, F. (2006) Visualizing networks. Methods Enzymol 411, 408–421.

    Article  PubMed  CAS  Google Scholar 

  43. Breitkreutz, B.-J., Stark, C., and Tyers, M. (2003) Osprey: a network visualization system. Genome Biol 4, R22.

    Article  PubMed  Google Scholar 

  44. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136, 2621–2632.

    Article  PubMed  CAS  Google Scholar 

  45. Sreenivasulu, N., Altschmied, L., Panitz, R., Hähnel, U., Michalek, W., Weschke, W., and Wobus, U. (2002) Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Mol Genet Genomics 266, 758–767.

    Article  PubMed  CAS  Google Scholar 

  46. Xie, Y., Cutler, A., Weimer, B., and Parfionovas, A. (2002) Statistical Methods for Spot Detection with Macroarray Data. In Proceedings of the 35th Symposium on the Interface of Computing Science and Statistics. The Interface Foundation.

    Google Scholar 

  47. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., et al. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31, 279–292.

    Article  PubMed  CAS  Google Scholar 

  48. Kreps, J.A., Wu, Y.J., Chang, H.S., Zhu, T., Wang, X., and Harper, J.F. (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130, 2129–2141.

    Article  PubMed  CAS  Google Scholar 

  49. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., et al. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50, 347–363.

    Article  PubMed  CAS  Google Scholar 

  50. Dinneny, J.R., Long, T.A., Wang, J.Y., Jung, J.W., Mace, D., Pointer, S., et al. (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942–945.

    Article  PubMed  CAS  Google Scholar 

  51. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., et al. (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.

    Article  PubMed  CAS  Google Scholar 

  52. Craigon, D.J., James, N., Okyere, J., Higgins, J., Jotham, J., and May, S. (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 32, D575–577.

    Article  Google Scholar 

  53. Wise, R.P., Caldo, R.A., Hong, L., Shen, L., Cannon, E., and Dickerson, J.A. (2007) BarleyBase/PLEXdb. Methods Mol Biol 406, 347–363.

    Article  PubMed  CAS  Google Scholar 

  54. Parkinson, H., Kapushesky, M., Kolesnikov, N., Rustici, G., Shojatalab, M., Abeygunawardena, N., et al. (2009) ArrayExpress update-from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res 37, D868–872.

    Article  Google Scholar 

  55. Manfield, I.W., Jen, C.H., Pinney, J.W., Michalopoulos, I., Bradford, J.R., Gilmartin, P.M., and Westhead, D.R. (2006) Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 34, W504–509.

    Article  Google Scholar 

  56. Horan, K., Jang, C., Bailey-Serres, J., Mittler, R., Shelton, C., Harper, J.F., et al. (2008) Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiol 147, 41–57.

    Article  PubMed  CAS  Google Scholar 

  57. Ma, S. and Bohnert, H.J. (2007) Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8, R49.

    Article  PubMed  Google Scholar 

  58. Ma, S., Gong, Q., and Bohnert, H.J. (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Res 17, 1614–1625.

    Article  PubMed  CAS  Google Scholar 

  59. Mentzen W.I. and Wurtele E.S. (2008) Regulon organization of Arabidopsis. BMC Plant Biol 8, 99.

    Article  PubMed  Google Scholar 

  60. Weston, D.J., Gunter, L.E., Rogers, A., and Wullschleger, S.D. (2008) Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Syst Biol 2, 16.

    Article  PubMed  Google Scholar 

  61. Zeller, G., Henz, S.R., Widmer, C.K., Sachsenberg, T., Rätsch, G., Weigel, D., and Laubinger, S. (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58, 1068–1082.

    Article  PubMed  CAS  Google Scholar 

  62. Denby, K. and Gehring, C. (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends in Biotechnol 23, 547–552.

    Article  CAS  Google Scholar 

  63. Aceituno, F.F., Moseyko, N., Rhee, S.Y., and Gutiérrez, R.A. (2008) The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana. BMC Genomics 9, 438.

    Article  PubMed  Google Scholar 

  64. Sunkar, R., Chinnusamy, V., Zhu, J., Zhu, J.K. (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12, 301–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Federal Ministry of Education and Research (BMBF; GABI-GRAIN grant FKZ: 0315041A) to NS and Oklahoma Agricultural Experiment Station to RS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Sreenivasulu, N., Sunkar, R., Wobus, U., Strickert, M. (2010). Array Platforms and Bioinformatics Tools for the Analysis of Plant Transcriptome in Response to Abiotic Stress. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 639. Humana Press. https://doi.org/10.1007/978-1-60761-702-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-702-0_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-701-3

  • Online ISBN: 978-1-60761-702-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics