Skip to main content

The Use of CRISPR-Cas9 Technology to Reveal Important Aspects of Human Airway Biology

  • Protocol
  • First Online:
Type 2 Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1799))

Abstract

The CRISPR-Cas9 technology is a powerful tool that enables site-specific genome modification (gene editing) and is increasingly used in research to generate gene knockout or knock-in in a variety of cells and organisms. This chapter provides a brief overview of this technology and describes a general methodology applicable to human airway biology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  Google Scholar 

  2. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 32:960–964

    Article  Google Scholar 

  3. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  CAS  Google Scholar 

  4. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  Google Scholar 

  5. Mojica FJ, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246

    Article  CAS  Google Scholar 

  6. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561

    Article  CAS  Google Scholar 

  7. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    Article  CAS  Google Scholar 

  8. Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61

    Article  CAS  Google Scholar 

  9. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  10. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  Google Scholar 

  11. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defense system. Microbiology 155:733–740

    Article  CAS  Google Scholar 

  12. Bauer DE, Canver MC, Orkin SH (2015) Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp 95:e52118

    Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants from NIH: 1U19AI125357, R01HL122321, R01AI106287, and R01HL125128.

The authors wish to thank Max Seibold, Jamie Everman, and Ari Stoner (Dr. Max Seibold’s Lab, National Jewish Health, Denver) for technical advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azzeddine Dakhama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dakhama, A., Chu, H.W. (2018). The Use of CRISPR-Cas9 Technology to Reveal Important Aspects of Human Airway Biology. In: Reinhardt, R. (eds) Type 2 Immunity. Methods in Molecular Biology, vol 1799. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7896-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7896-0_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7895-3

  • Online ISBN: 978-1-4939-7896-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics