Skip to main content

A Role for Retrotransposons in Chromothripsis

  • Protocol
  • First Online:
Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

Chromothripsis is a mutational event driven by tens to hundreds of double-stranded DNA breaks which occur in a single event between a limited number of chromosomes. Following chromosomal shattering, DNA fragments are stitched together in a seemingly random manner resulting in complex genomic rearrangements including sequence shuffling, deletions, and inversions of varying size. This genomic catastrophe has been observed in cancer genomes and the genomes of patients harboring developmental and congenital defects. The mechanisms catalyzing DNA breakage and coordinating the “random” assembly of genomic fragments are actively being investigated. Recently, retrotransposons—a type of “jumping gene”—have been implicated as one means to generate double-stranded DNA breaks during chromothripsis and as sequences which can contribute to the final configuration of the derived chromosomes. In this methods chapter, I discuss how to apply available bioinformatic tools and the hallmarks of retrotransposon mobilization to breakpoint junctions to assess the role for active and inactive retrotransposon sequences in chromothriptic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40. https://doi.org/10.1016/j.cell.2010.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12:663–670. https://doi.org/10.1038/nrc3352

    Article  CAS  PubMed  Google Scholar 

  3. Storchová Z, Kloosterman WP (2016) The genomic characteristics and cellular origin of chromothripsis. Curr Opin Cell Biol 40:106–113. https://doi.org/10.1016/j.ceb.2016.03.003

    Article  PubMed  Google Scholar 

  4. Kloosterman WP, Guryev V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20:1916–1924

    Article  CAS  PubMed  Google Scholar 

  5. Kloosterman WP, Cuppen E (2013) Chromothripsis in congenital disorders and cancer: similarities and differences. Curr Opin Cell Biol 25:341–348. https://doi.org/10.1016/j.ceb.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  6. Bertelsen B, Nazaryan-Petersen L, Sun W et al (2016) A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med 18:494–500. https://doi.org/10.1038/gim.2015.112

    Article  PubMed  Google Scholar 

  7. Nazaryan-Petersen L, Bertelsen B, Bak M et al (2016) Germline chromothripsis driven by L1-mediated retrotransposition and Alu/Alu homologous recombination. Hum Mutat 37:385–395. https://doi.org/10.1002/humu.22953

    Article  CAS  PubMed  Google Scholar 

  8. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58. https://doi.org/10.1038/nature10802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang C-Z, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184. https://doi.org/10.1038/nature14493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maciejowski J, Li Y, Bosco N et al (2015) Chromothripsis and kataegis induced by telomere crisis. Cell 163:1641–1654. https://doi.org/10.1016/j.cell.2015.11.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richardson SR, Doucet AJ, Kopera HC et al (2015) The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 3:MDNA3–0061–2014. https://doi.org/10.1128/microbiolspec.MDNA3-0061-2014

    Article  PubMed  Google Scholar 

  12. Kazazian HH Jr, Moran JV (2017) Mobile DNA in health and disease. N Engl J Med 377:361–370. https://doi.org/10.1056/NEJMra1510092

    Article  CAS  PubMed  Google Scholar 

  13. Moran JV, Holmes SE, Naas TP et al (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927. https://doi.org/10.1016/S0092-8674(00)81998-4

    Article  CAS  PubMed  Google Scholar 

  14. Mathias SL, Scott AF, Kazazian HH et al (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  CAS  PubMed  Google Scholar 

  15. Feng Q, Moran JV, Kazazian HH Jr et al (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916. https://doi.org/10.1016/S0092-8674(00)81997-2

    Article  CAS  PubMed  Google Scholar 

  16. Luan DD, Korman MH, Jakubczak JL et al (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605. https://doi.org/10.1016/0092-8674(93)90078-5

    Article  CAS  PubMed  Google Scholar 

  17. Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193

    Article  CAS  PubMed  Google Scholar 

  18. Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703. https://doi.org/10.1038/nrg2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morrish TA, Gilbert N, Myers JS et al (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165. https://doi.org/10.1038/ng898

    Article  CAS  PubMed  Google Scholar 

  20. Symer DE, Connelly C, Szak ST et al (2002) Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–338. https://doi.org/10.1016/S0092-8674(02)00839-5

    Article  CAS  PubMed  Google Scholar 

  21. Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110:315–325. https://doi.org/10.1016/S0092-8674(02)00828-0

    Article  CAS  PubMed  Google Scholar 

  22. Han K, Lee J, Meyer TJ et al (2007) Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet 3:1939–1949. https://doi.org/10.1371/journal.pgen.0030184

    Article  CAS  PubMed  Google Scholar 

  23. Lee J, Han K, Meyer TJ et al (2008) Chromosomal inversions between human and chimpanzee lineages caused by retrotransposons. PLoS ONE 3:e4047. https://doi.org/10.1371/journal.pone.0004047

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burns KH (2017) Transposable elements in cancer. Nat Rev Cancer 17:415–424. https://doi.org/10.1038/nrc.2017.35

    Article  CAS  PubMed  Google Scholar 

  25. Faulkner GJ, Garcia-Perez JL (2017) L1 Mosaicism in mammals: extent, effects, and evolution. Trends Genet. https://doi.org/10.1016/j.tig.2017.07.004

  26. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ewing AD (2015) Transposable element detection from whole genome sequence data. BMC Mobile DNA 6:24. https://doi.org/10.1186/s13100-015-0055-3

    Article  Google Scholar 

  28. Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0.2013-2015. http://www.repeatmasker.org

  29. Hancks DC, Kazazian HH (2016) Roles for retrotransposon insertions in human disease. Mob DNA 7:9. https://doi.org/10.1186/s13100-016-0065-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sen SK, Huang CT, Han K et al (2007) Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome. Nucleic Acids Res 35:3741–3751. https://doi.org/10.1093/nar/gkm317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang CZ, Leibowitz ML, Pellman D (2013) Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27:2513–2530. https://doi.org/10.1101/gad.229559.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beauchamp NJ, Makris M, Preston FE et al (2000) Major structural defects in the antithrombin gene in four families with type I antithrombin deficiency—partial/complete deletions and rearrangement of the antithrombin gene. Thromb Haemost 83:715–721

    CAS  PubMed  Google Scholar 

  33. Chen J-M, Stenson PD, Cooper DN et al (2005) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117:411–427. https://doi.org/10.1007/s00439-005-1321-0

    Article  CAS  PubMed  Google Scholar 

  34. Gilbert N, Lutz S, Morrish TA et al (2005) Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol 25:7780–7795. https://doi.org/10.1128/MCB.25.17.7780-7795.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22:191–203. https://doi.org/10.1016/j.gde.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moran JV, DeBerardinis RJ, Kazazian HH (1999) Exon shuffling by L1 retrotransposition. Science 283:1530–1534

    Article  CAS  PubMed  Google Scholar 

  37. Xing J, Wang H, Belancio VP et al (2006) Emergence of primate genes by retrotransposonmediated sequence transduction. Proc Natl Acad Sci U S A 103:17608–17613. https://doi.org/10.1073/pnas.0603224103

  38. Gasior SL, Wakeman TP, Xu B et al (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393. https://doi.org/10.1016/j.jmb.2006.01.089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mager DL, Stoye JP (2015) Mammalian endogenous retroviruses. Microbiol Spectr 3:MDNA3–0009-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0009-2014

    Article  PubMed  Google Scholar 

  40. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379. https://doi.org/10.1038/nrg798

    Article  CAS  PubMed  Google Scholar 

  41. Hancks DC, Kazazian HH (2010) SVA retrotransposons: evolution and genetic instability. Semin Cancer Biol 20:234–245. https://doi.org/10.1016/j.semcancer.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hancks DC, Ewing AD, Chen JE et al (2009) Exon-trapping mediated by the human retrotransposon SVA. Genome Res 19:1983–1991. https://doi.org/10.1101/gr.093153.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Damert A, Raiz J, Horn AV et al (2009) 5′-transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res 19:1992–2008. https://doi.org/10.1101/gr.093435.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei W, Gilbert N, Ooi SL et al (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21:1429–1439. https://doi.org/10.1128/MCB.21.4.1429-1439.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367. https://doi.org/10.1038/74184

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

D.C.H. is funded by a K99/R00 Pathway to Independence Award from the National Institutes of Health (USA, NIGMS) and the Cancer Prevention & Research Institute of Texas (CPRIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin C. Hancks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hancks, D.C. (2018). A Role for Retrotransposons in Chromothripsis. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics