Skip to main content

Delivery of Designer Epigenome Modifiers into Primary Human T Cells

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

The development of tools which allow for the precise alterations of the epigenetic landscape in desired genomic locations presents exciting possibilities toward further understanding how gene expression is regulated and opportunities to harness these properties for therapeutic purposes. In contrast to gene knockout strategies, targeted epigenome modifications, such as editing of DNA methylation, can mediate gene expression modulation without changing the genomic sequence. Thereby, in a therapeutic context, this strategy may offer a safer route as compared to gene disruption using designer nucleases that, to reach high efficiencies, relies on the occurrence of random mutations to inactivate the target gene. In addition, therapeutic benefit is influenced not only by the intrinsic safety and efficacy of the tools used but also by methods that allow efficient and non-toxic transfer of the selected reagents in the target cells. Here, we describe a detailed protocol, for safe delivery of TALE-based designer epigenome modifiers in the form of in vitro transcribed mRNA into primary human CD4+ T cells to efficiently silence the expression of an exemplary human gene (i.e., CCR5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conaway JW (2012) Introduction to theme “Chromatin, epigenetics, and transcription”. Annu Rev Biochem 81:61–64. https://doi.org/10.1146/annurev-biochem-090711-093103

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. https://doi.org/10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  3. Schubeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326. https://doi.org/10.1038/nature14192

    Article  CAS  PubMed  Google Scholar 

  4. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223

    Article  CAS  PubMed  Google Scholar 

  5. Velasco G, Hube F, Rollin J, Neuillet D, Philippe C, Bouzinba-Segard H, Galvani A, Viegas-Pequignot E, Francastel C (2010) Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc Natl Acad Sci U S A 107(20):9281–9286. https://doi.org/10.1073/pnas.1000473107

    Article  PubMed  PubMed Central  Google Scholar 

  6. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022. https://doi.org/10.1101/gad.2037511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280(14):13341–13348. https://doi.org/10.1074/jbc.M413412200

    Article  CAS  PubMed  Google Scholar 

  8. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220. https://doi.org/10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  9. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. https://doi.org/10.1038/ng1089

    Article  CAS  PubMed  Google Scholar 

  10. Li D, Zhang B, Xing X, Wang T (2015) Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods 72:29–40. https://doi.org/10.1016/j.ymeth.2014.10.032

    Article  CAS  PubMed  Google Scholar 

  11. Horsthemke B, Buiting K (2008) Genomic imprinting and imprinting defects in humans. Adv Genet 61:225–246. https://doi.org/10.1016/S0065-2660(07)00008-9

    Article  CAS  PubMed  Google Scholar 

  12. Kubota T, Miyake K, Hirasawa T (2013) Role of epigenetics in Rett syndrome. Epigenomics 5(5):583–592. https://doi.org/10.2217/epi.13.54

    Article  CAS  PubMed  Google Scholar 

  13. Fong CY, Morison J, Dawson MA (2014) Epigenetics in the hematologic malignancies. Haematologica 99(12):1772–1783. https://doi.org/10.3324/haematol.2013.092007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kadoch C, Crabtree GR (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv 1(5):e1500447. https://doi.org/10.1126/sciadv.1500447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L, Murphy D, Venneti S, Hameed M, Pawel BR, Wunder JS, Dickson BC, Lundgren SM, Jani KS, De Jay N, Papillon-Cavanagh S, Andrulis IL, Sawyer SL, Grynspan D, Turcotte RE, Nadaf J, Fahiminiyah S, Muir TW, Majewski J, Thompson CB, Chi P, Garcia BA, Allis CD, Jabado N, Lewis PW (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352(6287):844–849. https://doi.org/10.1126/science.aac7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17(10):630–641. https://doi.org/10.1038/nrg.2016.93

    Article  CAS  PubMed  Google Scholar 

  17. Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM, Beaty R, Pappou E, Harris J, Yen RW, Ahuja N, Brock MV, Stearns V, Feller-Kopman D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis SJ, Baylin SB, Zahnow CA (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21(3):430–446. https://doi.org/10.1016/j.ccr.2011.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin T, Castoro R, El Ahdab S, Jelinek J, Wang X, Si J, Shu J, He R, Zhang N, Chung W, Kantarjian HM, Issa JP (2011) Mechanisms of resistance to decitabine in the myelodysplastic syndrome. PLoS One 6(8):e23372. https://doi.org/10.1371/journal.pone.0023372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Falahi F, Sgro A, Blancafort P (2015) Epigenome engineering in cancer: fairytale or a realistic path to the clinic? Front Oncol 5:22. https://doi.org/10.3389/fonc.2015.00022

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mehrotra R, Renganaath K, Kanodia H, Loake GJ, Mehrotra S (2017) Towards combinatorial transcriptional engineering. Biotechnol Adv 35(3):390–405. https://doi.org/10.1016/j.biotechadv.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  21. Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58(4):575–585. https://doi.org/10.1016/j.molcel.2015.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cano-Rodriguez D, Rots MG (2016) Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep 4(4):170–179. https://doi.org/10.1007/s40142-016-0104-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xu GL, Bestor TH (1997) Cytosine methylation targeted to pre-determined sequences. Nat Genet 17(4):376–378. https://doi.org/10.1038/ng1297-376

    Article  CAS  PubMed  Google Scholar 

  24. Holz-Schietinger C, Reich NO (2010) The inherent processivity of the human de novo methyltransferase 3A (DNMT3A) is enhanced by DNMT3L. J Biol Chem 285(38):29091–29100. https://doi.org/10.1074/jbc.M110.142513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425(3):479–491. https://doi.org/10.1016/j.jmb.2012.11.038

    Article  CAS  PubMed  Google Scholar 

  26. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167(1):219–232.e214. https://doi.org/10.1016/j.cell.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23(4):415–423. https://doi.org/10.1038/nm.4313

    Article  CAS  PubMed  Google Scholar 

  28. Ranzani M, Annunziato S, Adams DJ, Montini E (2013) Cancer gene discovery: exploiting insertional mutagenesis. Mol Cancer Res 11(10):1141–1158. https://doi.org/10.1158/1541-7786.MCR-13-0244

    Article  CAS  PubMed  Google Scholar 

  29. Hornung V, Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10(2):123–130. https://doi.org/10.1038/nri2690

    Article  CAS  PubMed  Google Scholar 

  30. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ 3rd (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A 91(10):4509–4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mlambo T, Nitsch S, Hildenbeutel M, Romito M, Bossen C, Diederichs S, Cornu TI, Cathomen T, Mussolino C (in preparation) Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells with remarkable specificity

    Google Scholar 

  32. Nitsch S, Mussolino C (2018) Generation of TALE-based designer epigenome modifiers. In: Rots MG, Jeltsch A (eds) Epigenome editing: methods and protocols, vol 1767. Methods in molecular biology. Springer, New York

    Google Scholar 

Download references

Acknowledgments

We thank the members of our laboratory for helpful discussion. This work was supported by the Federal Ministry of Education and Research (BMBF) and the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Mussolino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mlambo, T., Romito, M., Cornu, T.I., Mussolino, C. (2018). Delivery of Designer Epigenome Modifiers into Primary Human T Cells. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics