Skip to main content

Intact Cell Assays to Monitor AMPK and Determine the Contribution of the AMP-Binding or ADaM Sites to Activation

  • Protocol
  • First Online:
AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

AMP-activated protein kinase (AMPK) is extremely sensitive to cellular stress, so that nonphysiological activation of the kinase can readily occur during harvesting of cells or tissues. In this chapter we describe methods to harvest cells and tissues, and for kinase assays, that preserve the physiological activation status of AMPK as far as possible. Note that similar care with methods of cell or tissue harvesting is required when AMPK function is monitored by Western blotting, rather than by kinase assays. We also describe methods to determine whether compounds that activate AMPK in intact cells do so indirectly by interfering with cellular ATP synthesis or directly by binding to AMPK and, if the latter, whether this occurs by binding at the AMP-binding sites on the γ subunit or at the ADaM site located between the α and β subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, Tan MH, Wang D, Wu D, Xu HE, Melcher K (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res 25(1):50–66. https://doi.org/10.1038/cr.2014.150

    Article  PubMed  Google Scholar 

  2. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017. https://doi.org/10.1038/ncomms4017

    PubMed  PubMed Central  Google Scholar 

  3. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11(6):554–565. https://doi.org/10.1016/j.cmet.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113(2):274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jensen TE, Ross FA, Kleinert M, Sylow L, Knudsen JR, Gowans GJ, Hardie DG, Richter EA (2015) PT-1 selectively activates AMPK-gamma1 complexes in mouse skeletal muscle, but activates all three gamma subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochem J 467(3):461–472. https://doi.org/10.1042/BJ20141142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336(6083):918–922. https://doi.org/10.1126/science.1215327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ross FA, Hawley SA, Auciello FR, Gowans GJ, Atrih A, Lamont DJ, Hardie DG (2017) Mechanisms of paradoxical activation of AMP-activated protein kinase by the kinase inhibitors SU6656 and sorafenib. Cell Chem Biol 24(7):813-824. https://doi.org/10.1016/j.chembiol.2017.05.021

    Google Scholar 

  8. Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18(4):556–566. https://doi.org/10.1016/j.cmet.2013.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Easom RA, Zammit VA (1984) A cold-clamping technique for the rapid sampling of rat liver for studies on enzymes in separate cell fractions. Suitability for the study of enzymes regulated by reversible phosphorylation-dephosphorylation. Biochem J 220:733–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davies SP, Carling D, Munday MR, Hardie DG (1992) Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur J Biochem 203(3):615–623

    Article  CAS  PubMed  Google Scholar 

  11. Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528(Pt 1):221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corton JM, Gillespie JG, Hardie DG (1994) Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 4(4):315–324

    Article  CAS  PubMed  Google Scholar 

  13. Ross FA, Jensen TE, Hardie DG (2016) Differential regulation by AMP and ADP of AMPK complexes containing different gamma subunit isoforms. Biochem J 473(2):189–199. https://doi.org/10.1042/BJ20150910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Studies in the Hardie Laboratory were supported by a Senior Investigator Award (097726) from the Wellcome Trust and by a Programme Grant (C37030/A15101) from the Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grahame Hardie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hawley, S.A., Fyffe, F.A., Russell, F.M., Gowans, G.J., Grahame Hardie, D. (2018). Intact Cell Assays to Monitor AMPK and Determine the Contribution of the AMP-Binding or ADaM Sites to Activation. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics