Skip to main content

Diffusion-Weighted Magnetic Resonance Imaging

  • Protocol
  • First Online:
Preclinical MRI

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1718))

Abstract

Magnetic resonance imaging (MRI) is a technique based on the contents and relaxation features of water in tissues. In basic MRI sequences, diffusion phenomenon of water molecules is not taken into account although it has a notable influence in the relaxation times, and therefore in the signal intensity of images. In fact, MRI techniques that take advantage of water diffusion have experienced a huge development in last years. Diffusion-weighted imaging (DWI) has spectacularly evolved reaching nowadays a great impact both in clinical and preclinical imaging—especially in the neuroimaging field—and in basic research. We present here a protocol to perform DWI studies in a high-field preclinical setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys-Berlin 322(8):549–560

    Article  Google Scholar 

  2. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover Publications, NY

    Google Scholar 

  3. Le Bihan D (1995) Diffusion, perfusion and functional magnetic resonance imaging. J Mal Vasc 20(3):203–214

    PubMed  Google Scholar 

  4. Luypaert R, Boujraf S, Sourbron S, Osteaux M (2001) Diffusion and perfusion MRI: basic physics. Eur J Radiol 38(1):19–27

    Article  CAS  PubMed  Google Scholar 

  5. Stark D, Bradley W (1999) Magnetic resonance imaging, vol 1. Mosby, St. Louis, MO

    Google Scholar 

  6. Stark D, Bradley W (1999) Magnetic resonance imaging, vol 3, Mosby St. Louis, MO

    Google Scholar 

  7. Davis S, Fisher M, Warach S (2003) Magnetic resonance imaging in stroke. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  8. Einstein A (1956) Investigation of the theory of the Brownian movement. Dover, New York

    Google Scholar 

  9. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455. https://doi.org/10.1002/nbm.782

    Article  PubMed  Google Scholar 

  10. Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257(3):102–109

    Article  CAS  PubMed  Google Scholar 

  11. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin schoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  12. Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, Baldock C, Pope JM (2000) Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med 43(3):368–374

    Article  CAS  PubMed  Google Scholar 

  13. Holz M, Heil SR, Sacco A (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys 2(20):4740–4742

    Article  CAS  Google Scholar 

  14. Le Bihan D, Douek P, Argyropoulou M, Turner R, Patronas N, Fulham M (1993) Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 5(1):25–31

    PubMed  Google Scholar 

  15. van Gelderen P, de Vleeschouwer MH, DesPres D, Pekar J, van Zijl PC, Moonen CT (1994) Water diffusion and acute stroke. Magn Reson Med 31(2):154–163

    Article  PubMed  Google Scholar 

  16. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. https://doi.org/10.1148/rg.26si065510

    Article  PubMed  Google Scholar 

  17. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217(2):331–345. https://doi.org/10.1148/radiology.217.2.r00nv24331

    Article  CAS  PubMed  Google Scholar 

  18. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. Am J Neuroradiol 29(4):632–641. https://doi.org/10.3174/ajnr.A1051

    Article  CAS  PubMed  Google Scholar 

  19. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  21. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811

    Article  CAS  PubMed  Google Scholar 

  22. Kanayama S, Kuhara S, Satoh K (1996) In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping. Magn Reson Med 36(4):637–642

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Palmero I, Lopez-Larrubia P, Cerdan S, Villalobo A (2013) Nuclear magnetic resonance imaging of tumour growth and neovasculature performance in vivo reveals Grb7 as a novel antiangiogenic target. NMR Biomed 26(9):1059–1069. https://doi.org/10.1002/nbm.2918

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant SAF2014-53739-R. IG held a predoctoral contract from Ministerio de Economía, Indrustria y Competitividad (MINECO) of Spain. DC held a postdoctoral contract from Consejo Superior de Investigaciones Científicas (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar López-Larrubia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guadilla, I., Calle, D., López-Larrubia, P. (2018). Diffusion-Weighted Magnetic Resonance Imaging. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics