Skip to main content

Clinical Evaluation and Biomarker Profiling of Hsp90 Inhibitors

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

Inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) have been in clinical development as anticancer agents since 1998. There have been 18 Hsp90 inhibitors (Hsp90i) that have entered the clinic, all of which, though structurally distinct, target the ATP-binding Bergerat fold of the chaperone N-terminus. Currently, there are five Hsp90 inhibitors in clinical trial and no approved drug in this class. One impediment to development of a clinically efficacious Hsp90 inhibitor has been the very low percentage of clinical trials that have codeveloped a predictive or pharmacodynamic marker of the anticancer activity inherent in this class of drugs. Here, we provide an overview of the clinical development of Hsp90 inhibitors, review the pharmacodynamic assays that have been employed in the past, and highlight new approaches to Hsp90 inhibitor clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritossa F (1962) New puffing pattern induced by temperature shock and Dnp in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  2. Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398

    Article  CAS  PubMed  Google Scholar 

  3. Pratt WB (1987) Transformation of glucocorticoid and progesterone receptors to the DNA-binding state. J Cell Biochem 35:51–68

    Article  CAS  PubMed  Google Scholar 

  4. Smith DF, Whitesell L, Nair SC et al (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 15:6804–6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360

    CAS  PubMed  Google Scholar 

  6. Scheibel T, Buchner J (1998) The Hsp90 complex—a super-chaperone machine as a novel drug target. Biochem Pharmacol 56:675–682

    Article  CAS  PubMed  Google Scholar 

  7. Brugge JS, Erikson E, Erikson RL (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25:363–372

    Article  CAS  PubMed  Google Scholar 

  8. Oppermann H, Levinson W, Bishop JM (1981) A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc Natl Acad Sci U S A 78:1067–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 90:7074–7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whitesell L, Mimnaugh EG, De Costa B et al (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279

    Article  CAS  PubMed  Google Scholar 

  12. Banerji U, O'Donnell A, Scurr M et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161

    Article  CAS  PubMed  Google Scholar 

  13. Modi S, Stopeck A, Linden H et al (2011) HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 17:5132–5139

    Article  CAS  PubMed  Google Scholar 

  14. Jhaveri K, Taldone T, Modi S et al (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755

    Article  CAS  PubMed  Google Scholar 

  15. Marcu MG, Chadli A, Bouhouche I et al (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186

    Article  CAS  PubMed  Google Scholar 

  16. Donnelly A, Blagg BS (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15:2702–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arteaga CL (2011) Why is this effective HSP90 inhibitor not being developed in HER2+ breast cancer? Clin Cancer Res 17:4919–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trepel J, Mollapour M, Giaccone G et al (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  Google Scholar 

  19. Xu L, Eiseman JL, Egorin MJ et al (2003) Physiologically-based pharmacokinetics and molecular pharmacodynamics of 17-(allylamino)-17-demethoxygeldanamycin and its active metabolite in tumor-bearing mice. J Pharmacokinet Pharmacodyn 30:185–219

    Article  CAS  PubMed  Google Scholar 

  20. Chiosis G, Neckers L (2006) Tumor selectivity of Hsp90 inhibitors: the explanation remains elusive. ACS Chem Biol 1:279–284

    Article  CAS  PubMed  Google Scholar 

  21. Kamal A, Thao L, Sensintaffar J et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  22. Woodford MR, Truman AW, Dunn DM et al (2016) Mps1 mediated phosphorylation of Hsp90 confers renal cell carcinoma sensitivity and selectivity to Hsp90 inhibitors. Cell Rep 14:872–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moulick K, Ahn JH, Zong H et al (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7:818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodina A, Wang T, Yan P et al (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Solit DB, Osman I, Polsky D et al (2008) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14:8302–8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burris HA III, Berman D, Murthy B et al (2011) Tanespimycin pharmacokinetics: a randomized dose-escalation crossover phase 1 study of two formulations. Cancer Chemother Pharmacol 67:1045–1054

    Article  CAS  PubMed  Google Scholar 

  27. Dai C, Whitesell L, Rogers AB et al (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mendillo ML, Santagata S, Koeva M et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Whitesell L, Santagata S, Mendillo ML et al (2014) HSP90 empowers evolution of resistance to hormonal therapy in human breast cancer models. Proc Natl Acad Sci U S A 111:18297–18302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brodsky JL, Chiosis G (2006) Hsp70 molecular chaperones: emerging roles in human disease and identification of small molecule modulators. Curr Top Med Chem 6:1215–1225

    Article  CAS  PubMed  Google Scholar 

  31. Whitesell L, Lindquist S (2009) Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 13:469–478

    Article  CAS  PubMed  Google Scholar 

  32. Patury S, Miyata Y, Gestwicki JE (2009) Pharmacological targeting of the Hsp70 chaperone. Curr Top Med Chem 9:1337–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sawarkar R, Sievers C, Paro R (2012) Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149:807–818

    Article  CAS  PubMed  Google Scholar 

  34. Solier S, Kohn KW, Scroggins B et al (2012) Heat shock protein 90alpha (HSP90alpha), a substrate and chaperone of DNA-PK necessary for the apoptotic response. Proc Natl Acad Sci U S A 109:12866–12872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655

    Article  CAS  PubMed  Google Scholar 

  36. Zuehlke AD, Beebe K, Neckers L et al (2015) Regulation and function of the human HSP90AA1 gene. Gene 570:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Woodford MR, Dunn D, Miller JB et al (2016) Impact of Posttranslational Modifications on the Anticancer Activity of Hsp90 Inhibitors. Adv Cancer Res 129:31–50

    Article  PubMed  Google Scholar 

  38. Prodromou C (2017) Regulatory mechanisms of Hsp90. Biochem Mol Biol J 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sawarkar R, Paro R (2013) Hsp90@chromatin.nucleus: an emerging hub of a networker. Trends Cell Biol 23:193–201

    Article  CAS  PubMed  Google Scholar 

  40. Graner MW (2016) HSP90 and immune modulation in cancer. Adv Cancer Res 129:191–224

    Article  PubMed  Google Scholar 

  41. Galluzzi L, Buque A, Kepp O et al (2017) Reply: the complement system is also important in immunogenic cell death. Nat Rev Immunol 17:143

    Article  CAS  PubMed  Google Scholar 

  42. Ohkubo S, Kodama Y, Muraoka H et al (2015) TAS-116, a highly selective inhibitor of heat shock protein 90alpha and beta, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther 14:14–22

    Article  CAS  PubMed  Google Scholar 

  43. Heske CM, Mendoza A, Edessa LD et al (2016) STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget 7:65540–65552

    PubMed  PubMed Central  Google Scholar 

  44. Pratt WB, Gestwicki JE, Osawa Y et al (2015) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:353–371

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Venable J, LaPointe P et al (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127:803–815

    Article  CAS  PubMed  Google Scholar 

  46. Okiyoneda T, Barriere H, Bagdany M et al (2010) Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329:805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Geller R, Vignuzzi M, Andino R et al (2007) Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev 21:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geller R, Taguwa S, Frydman J (2012) Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta 1823:698–706

    Article  CAS  PubMed  Google Scholar 

  49. Woodford MR, Dunn DM, Ciciarelli JG et al (2016) Targeting Hsp90 in non-cancerous Maladies. Curr Top Med Chem 16:2792–2804

    Article  CAS  PubMed  Google Scholar 

  50. Sun X, Barlow EA, Ma S et al (2010) Hsp90 inhibitors block outgrowth of EBV-infected malignant cells in vitro and in vivo through an EBNA1-dependent mechanism. Proc Natl Acad Sci U S A 107:3146–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shatzer A, Ali MA, Chavez M et al (2017) Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV)-infected B and T cells and reduces the percentage of EBV-infected cells in the blood. Leuk Lymphoma 58:923–931

    Article  CAS  PubMed  Google Scholar 

  52. Vartholomaiou E, Echeverria PC, Picard D (2016) Unusual Suspects in the twilight zone between the Hsp90 interactome and carcinogenesis. Adv Cancer Res 129:1–30

    Article  PubMed  Google Scholar 

  53. Calderwood SK, Neckers L (2016) Hsp90 in cancer: transcriptional roles in the nucleus. Adv Cancer Res 129:89–106

    Article  PubMed  Google Scholar 

  54. Lu Y, Xu W, Ji J et al (2015) Alternative splicing of the cell fate determinant Numb in hepatocellular carcinoma. Hepatology 62:1122–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferraldeschi R, Welti J, Powers MV et al (2016) Second-generation HSP90 inhibitor onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate cancer cells. Cancer Res 76:2731–2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murshid A, Gong J, Calderwood SK (2010) Heat shock protein 90 mediates efficient antigen cross presentation through the scavenger receptor expressed by endothelial cells-I. J Immunol 185:2903–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alarcon SV, Mollapour M, Lee MJ et al (2012) Tumor-intrinsic and tumor-extrinsic factors impacting hsp90-targeted therapy. Curr Mol Med 12:1125–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane B. Trepel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yuno, A. et al. (2018). Clinical Evaluation and Biomarker Profiling of Hsp90 Inhibitors. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics