Skip to main content

Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1702))

Abstract

The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498. https://doi.org/10.1101/gr.190595.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17(7):413–425. https://doi.org/10.1038/nrm.2016.24

    Article  CAS  PubMed  Google Scholar 

  3. Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105(7):829–841

    Article  CAS  PubMed  Google Scholar 

  4. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):873–878. https://doi.org/10.1038/nrg1475

    Article  CAS  PubMed  Google Scholar 

  5. Wagner A, Regev A, Yosef N (2016) Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol 34(11):1145–1160. https://doi.org/10.1038/nbt.3711

    Article  CAS  PubMed  Google Scholar 

  6. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H, Winter D, Lara-Astiaso D, Gury M, Weiner A, David E, Cohen N, Lauridsen FK, Haas S, Schlitzer A, Mildner A, Ginhoux F, Jung S, Trumpp A, Porse BT, Tanay A, Amit I (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163(7):1663–1677. https://doi.org/10.1016/j.cell.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  7. Blakeley P, Fogarty NM, del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK (2015) Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142(18):3151–3165. https://doi.org/10.1242/dev.123547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin Z, Sadok A, Sailem H, McCarthy A, Xia X, Li F, Garcia MA, Evans L, Barr AR, Perrimon N, Marshall CJ, Wong ST, Bakal C (2013) A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nat Cell Biol 15(7):860–871. https://doi.org/10.1038/ncb2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moussy A, Cosette J, Parmentier R, da Silva C, Corre G, Richard A, Gandrillon O, Stockholm D, Paldi A (2017) Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment. PLoS Biol 15(7):e2001867. https://doi.org/10.1371/journal.pbio.2001867

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stockholm D, Edom-Vovard F, Coutant S, Sanatine P, Yamagata Y, Corre G, Le Guillou L, Neildez-Nguyen TM, Paldi A (2010) Bistable cell fate specification as a result of stochastic fluctuations and collective spatial cell behaviour. PLoS One 5(12):e14441. https://doi.org/10.1371/journal.pone.0014441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552. https://doi.org/10.1038/nbt.2594

    Article  Google Scholar 

  13. Gut G, Tadmor MD, Pe'er D, Pelkmans L, Liberali P (2015) Trajectories of cell-cycle progression from fixed cell populations. Nat Methods 12(10):951–954. https://doi.org/10.1038/nmeth.3545

    Article  CAS  PubMed  Google Scholar 

  14. Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N, Pe'er D (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34(6):637–645. https://doi.org/10.1038/nbt.3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ezer D, Moignard V, Gottgens B, Adryan B (2016) Determining physical mechanisms of gene expression regulation from single cell gene expression data. PLoS Comput Biol 12(8):e1005072. https://doi.org/10.1371/journal.pcbi.1005072

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development 136(23):3853–3862. https://doi.org/10.1242/dev.035139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang S (2012) The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology? Bioessays 34(2):149–157. https://doi.org/10.1002/bies.201100031

    Article  CAS  PubMed  Google Scholar 

  18. Furusawa C, Kaneko K (2012) A dynamical-systems view of stem cell biology. Science 338(6104):215–217. https://doi.org/10.1126/science.1224311

    Article  CAS  PubMed  Google Scholar 

  19. Waddington CH (ed) (1957) The strategy of the genes. Allen & Unwin, Crows Nest

    Google Scholar 

  20. Hume DA (2000) Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96(7):2323–2328

    CAS  PubMed  Google Scholar 

  21. Ko MS (1991) A stochastic model for gene induction. J Theor Biol 153(2):181–194

    Article  CAS  PubMed  Google Scholar 

  22. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186. https://doi.org/10.1126/science.1070919

    Article  CAS  PubMed  Google Scholar 

  23. Balazsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision making and biological noise: from microbes to mammals. Cell 144(6):910–925. https://doi.org/10.1016/j.cell.2011.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen H, Larson DR (2016) What have single-molecule studies taught us about gene expression? Genes Dev 30(16):1796–1810. https://doi.org/10.1101/gad.281725.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larson DR, Singer RH, Zenklusen D (2009) A single molecule view of gene expression. Trends Cell Biol 19(11):630–637. https://doi.org/10.1016/j.tcb.2009.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corre G, Stockholm D, Arnaud O, Kaneko G, Vinuelas J, Yamagata Y, Neildez-Nguyen TM, Kupiec JJ, Beslon G, Gandrillon O, Paldi A (2014) Stochastic fluctuations and distributed control of gene expression impact cellular memory. PLoS One 9(12):e115574. https://doi.org/10.1371/journal.pone.0115574

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lestas I, Vinnicombe G, Paulsson J (2010) Fundamental limits on the suppression of molecular fluctuations. Nature 467(7312):174–178. https://doi.org/10.1038/nature09333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwanhausser B, Wolf J, Selbach M, Busse D (2013) Synthesis and degradation jointly determine the responsiveness of the cellular proteome. Bioessays 35(7):597–601. https://doi.org/10.1002/bies.201300017

    Article  PubMed  Google Scholar 

  29. Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291(5505):843–847

    Article  CAS  PubMed  Google Scholar 

  30. Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A, Ozato K, Brown DT, Hager G, Bustin M, Misteli T (2004) Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24(14):6393–6402. https://doi.org/10.1128/MCB.24.14.6393-6402.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turner BM (2012) The adjustable nucleosome: an epigenetic signaling module. Trends Genet 28(9):436–444. https://doi.org/10.1016/j.tig.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  32. Dodd IB, Micheelsen MA, Sneppen K, Thon G (2007) Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129(4):813–822. https://doi.org/10.1016/j.cell.2007.02.053

    Article  CAS  PubMed  Google Scholar 

  33. Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15(2):551–589. https://doi.org/10.1089/ars.2010.3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16(1):9–17. https://doi.org/10.1016/j.cmet.2012.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kupiec JJ (1996) A chance-selection model for cell differentiation. Cell Death Differ 3(4):385–390

    CAS  PubMed  Google Scholar 

  36. Kupiec JJ (1997) A Darwinian theory for the origin of cellular differentiation. Mol Gen Genet 255(2):201–208

    Article  CAS  PubMed  Google Scholar 

  37. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934. https://doi.org/10.1038/nature09486

    Article  CAS  PubMed  Google Scholar 

  38. Paldi A (2003) Stochastic gene expression during cell differentiation: order from disorder? Cell Mol Life Sci 60(9):1775–1778. https://doi.org/10.1007/s00018-003-23147-z

    Article  CAS  PubMed  Google Scholar 

  39. Paldi A (2012) What makes the cell differentiate? Prog Biophys Mol Biol 110(1):41–43. https://doi.org/10.1016/j.pbiomolbio.2012.04.003

    Article  PubMed  Google Scholar 

  40. Mojtahedi M, Skupin A, Zhou J, Castano IG, Leong-Quong RY, Chang H, Trachana K, Giuliani A, Huang S (2016) Cell fate decision as high-dimensional critical state transition. PLoS Biol 14(12):e2000640. https://doi.org/10.1371/journal.pbio.2000640

    Article  PubMed  PubMed Central  Google Scholar 

  41. Richard A, Boullu L, Herbach U, Bonnafoux A, Morin V, Vallin E, Guillemin A, Papili Gao N, Gunawan R, Cosette J, Arnaud O, Kupiec J-J, Espinasse T, Gonin-Giraud S, Gandrillon O (2016) Single-cell-based analysis highlights a surge in cell-to-cell molecular variability preceding irreversible commitment in a differentiation process. PLoS Biol 14:e1002585. https://doi.org/10.1371/journal.pbio.1002585

    Article  PubMed  PubMed Central  Google Scholar 

  42. Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19(4):271–281. https://doi.org/10.1038/ncb3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kupiec J-J (2009) The origin of individuals. World Scientific, Hackensack, NJ

    Book  Google Scholar 

Download references

Acknowledgments

I thank my colleagues, Alice Moussy, Daniel Stockholm, and Guillaume Corre, for the helpful discussions and the useful comments on the manuscript.

Financial support: EPHE, Genethon, Stochagene ANR grant n° BSV6 014 02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Paldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paldi, A. (2018). Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 1702. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7456-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7456-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7455-9

  • Online ISBN: 978-1-4939-7456-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics