Skip to main content

Rational and Semirational Protein Design

  • Protocol
  • First Online:
Protein Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1685))

Abstract

This mini review gives an overview over different design approaches and methodologies applied in rational and semirational enzyme engineering. The underlying principles for engineering novel activities, enantioselectivity, substrate specificity, stability, and pH optimum are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ghislieri D, Green AP, Pontini M et al (2013) Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J Am Chem Soc 135:10863–10869

    Article  CAS  PubMed  Google Scholar 

  2. Kille S, Zilly FE, Acevedo JP et al (2011) Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat Chem 3:738–743

    Article  CAS  PubMed  Google Scholar 

  3. Liskova V, Bednar D, Prudnikova T et al (2015) Balancing the stability-activity trade-off by fine-tuning dehalogenase access tunnels. ChemCatChem 7:648–659

    Article  CAS  Google Scholar 

  4. Pavlova M, Klvana M, Prokop Z et al (2009) Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol 5:727–733

    Article  CAS  PubMed  Google Scholar 

  5. Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed 45:7745–7751

    Article  CAS  Google Scholar 

  6. Raza S, Fransson L, Hult K (2001) Enantioselectivity in Candida antarctica lipase B: a molecular dynamics study. Protein Sci 10:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rotticci D, Rotticci-Mulder JC, Denman S et al (2001) Improved enantioselectivity of a lipase by rational protein engineering. ChemBioChem 2:766–770

    Article  CAS  PubMed  Google Scholar 

  8. Tynan-Connolly BM, Nielsen JE (2007) Redesigning protein pK(a) values. Protein Sci 16:239–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pokhrel S, Joo JC, Yoo YJ (2013) Shifting the optimum pH of Bacillus circulans xylanase towards acidic side by introducing arginine. Biotechnol Bioprocess Eng 18:35–42

    Article  CAS  Google Scholar 

  10. Pokhrel S, Joo JC, Kim YH et al (2012) Rational design of a Bacillus circulans xylanase by introducing charged residue to shift the pH optimum. Process Biochem 47:2487–2493

    Article  CAS  Google Scholar 

  11. Xu H, Zhang F, Shang H et al (2013) Alkalophilic adaptation of XynB endoxylanase from Aspergillus niger via rational design of pKa of catalytic residues. J Biosci Bioeng 115:618–622

    Article  CAS  PubMed  Google Scholar 

  12. Wijma HJ, Floor RJ, Jekel PA et al (2014) Computationally designed libraries for rapid enzyme stabilization. Protein Eng Des Sel 27:49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wijma HJ, Floor RJ, Bjelic S et al (2015) Enantioselective enzymes by computational design and in silico screening. Angew Chem Int Ed 54: 3726–3730

    Google Scholar 

  14. Rothlisberger D, Khersonsky O, Wollacott AM et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195

    Article  PubMed  Google Scholar 

  15. Siegel JB, Zanghellini A, Lovick HM et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blomberg R, Kries H, Pinkas DM et al (2013) Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503:418–421

    Article  CAS  PubMed  Google Scholar 

  17. Jiang L, Althoff EA, Clemente FR et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korendovych IV, Kulp DW, Wu Y et al (2011) Design of a switchable eliminase. Proc Natl Acad Sci U S A 108:6823–6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moroz YS, Dunston TT, Makhlynets OV et al (2015) New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J Am Chem Soc 137:14905–14911

    Article  CAS  PubMed  Google Scholar 

  20. Raymond EA, Mack KL, Yoon JH et al (2015) Design of an allosterically regulated retroaldolase. Protein Sci 24:561–570

    Article  CAS  PubMed  Google Scholar 

  21. Burton AJ, Thomson AR, Dawson WM et al (2016) Installing hydrolytic activity into a completely de novo protein framework. Nat Chem 8:837–844

    Article  CAS  PubMed  Google Scholar 

  22. Pan T, Liu Y, Si C et al (2017) Construction of ATP-switched allosteric antioxidant selenoenzyme. ACS Catalysis 7(3):1875–1879

    Article  CAS  Google Scholar 

  23. Renfrew PD, Choi EJ, Bonneau R et al (2012) Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design. PLoS One 7:e32637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mills JH, Khare SD, Bolduc JM et al (2013) Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. J Am Chem Soc 135:13393–13399

    Article  CAS  PubMed  Google Scholar 

  25. Reetz MT, Jiao N (2006) Copper–phthalocyanine conjugates of serum albumins as enantioselective catalysts in Diels–Alder reactions. Angew Chem Int Ed 45:2416–2419

    Article  CAS  Google Scholar 

  26. Key HM, Dydio P, Clark DS et al (2016) Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534:534–537

    Article  CAS  PubMed  Google Scholar 

  27. Lo C, Ringenberg MR, Gnandt D et al (2011) Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology. Chem Commun 47:12065–12067

    Article  CAS  Google Scholar 

  28. Bornscheuer UT, Huisman GW, Kazlauskas RJ et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  29. Seelig B, Szostak JW (2007) Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448:828–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiss G, Celebi-Olcum N, Moretti R et al (2013) Computational enzyme design. Angew Chem Int Ed 52:5700–5725

    Article  CAS  Google Scholar 

  31. Reetz MT (2013) Biocatalysis in organic chemistry and biotechnology: past, present and future. J Am Chem Soc 135:12480–12496

    Article  CAS  PubMed  Google Scholar 

  32. Reetz MT (2011) Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem Int Ed 50:138–174

    Article  CAS  Google Scholar 

  33. Reetz MT (2004) Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc Natl Acad Sci U S A 101:5716–5722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schramm VL (2005) Enzymatic transition states: thermodynamics, dynamics and analogue design. Arch Biochem Biophys 433:13–26

    Article  CAS  PubMed  Google Scholar 

  35. Butler CF, Peet C, Mason AE et al (2013) Key mutations alter the cytochrome P450 BM3 conformational landscape and remove inherent substrate bias. J Biol Chem 288:25387–25399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein–ligand docking: current status and future challenges. Proteins Struct Funct Bioinf 65:15–26

    Article  CAS  Google Scholar 

  37. Gumulya Y, Sanchis J, Reetz MT (2012) Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima. ChemBioChem 13:1060–1066

    Article  CAS  PubMed  Google Scholar 

  38. Chovancova E, Pavelka A, Benes P et al (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8:e1002708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Available from: http://www.pymol.org

  40. Eisenmesser EZ, Bosco DA, Akke M et al (2002) Enzyme dynamics during catalysis. Science 295:1520–1523

    Article  CAS  PubMed  Google Scholar 

  41. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Childers MC, Daggett V (2017) Insights from molecular dynamics simulations for computational protein design. Mol Sys Des Eng 2:9–33

    Article  CAS  Google Scholar 

  43. Wijma HJ, Floor RJ, Janssen DB (2013) Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr Opin Struct Biol 23:588–594

    Article  CAS  PubMed  Google Scholar 

  44. Bartsch S, Wybenga GG, Jansen M et al (2013) Redesign of a phenylalanine aminomutase into a phenylalanine ammonia lyase. ChemCatChem 5:1797–1802

    Article  CAS  Google Scholar 

  45. Wijma HJ, Marrink SJ, Janssen DB (2014) Computationally efficient and accurate enantioselectivity modeling by clusters of molecular dynamics simulations. J Chem Inf Model 54:2079–2092

    Article  CAS  PubMed  Google Scholar 

  46. Chen MMY, Snow CD, Vizcarra CL et al (2012) Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Eng Des Sel 25:171–178

    Article  CAS  PubMed  Google Scholar 

  47. Bloom JD, Labthavikul ST, Otey CR et al (2006) Protein stability promotes evolvability. Proc Nat Acad Sci U S A 103:5869–6874

    Article  CAS  Google Scholar 

  48. Reetz MT, Soni P, Fernández L (2009) Knowledge-guided laboratory evolution of protein thermolability. Biotechnol Bioeng 102:1712–1717

    Article  CAS  PubMed  Google Scholar 

  49. Seeliger D, de Groot BL (2010) Protein thermostability calculations using alchemical free energy simulations. Biophys J 98:2309–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeiske T, Stafford KA, Palmer AG (2016) Thermostability of enzymes from molecular dynamics simulations. J Chem Theory Comput 12:2489–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Borgo B, Havranek JJ (2012) Automated selection of stabilizing mutations in designed and natural proteins. Proc Nat Acad Sci U S A 109:1494–1499

    Article  CAS  Google Scholar 

  52. Gribenko AV, Patel MM, Liu J et al (2009) Rational stabilization of enzymes by computational redesign of surface charge–charge interactions. Proc Natl Acad Sci U S A 106:2601–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Durme J, Delgado J, Stricher F et al (2011) A graphical interface for the FoldX forcefield. Bioinformatics 27:1711–1712

    Article  PubMed  Google Scholar 

  54. Korendovych IV, DeGrado WF (2014) Catalytic effciency of designed catalytic proteins. Curr Opin Struct Biol 27:113–121

    Article  CAS  PubMed  Google Scholar 

  55. Wijma HJ, Janssen DB (2013) Computational design gains momentum in enzyme catalysis engineering. FEBS J 280:2948–2960

    Article  CAS  PubMed  Google Scholar 

  56. Yeung N, Lin YW, Gao YG et al (2009) Rational design of a structural and functional nitric oxide reductase. Nature 462:1079–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kazlauskas RJ, Bornscheuer UT (2009) Finding better protein engineering strategies. Nat Chem Biol 5:526–529

    Article  CAS  PubMed  Google Scholar 

  58. Höhne M, Schätzle S, Jochens H et al (2010) Rational assignment of key motifs for function guides in silico enzyme identification. Nat Chem Biol 6:807–813

    Article  PubMed  Google Scholar 

  59. Yin H, Slusky JS, Berger BW et al (2007) Computational design of peptides that target transmembrane helices. Science 315:1817–1822

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Korendovych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Korendovych, I.V. (2018). Rational and Semirational Protein Design. In: Bornscheuer, U., Höhne, M. (eds) Protein Engineering. Methods in Molecular Biology, vol 1685. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7366-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7366-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7364-4

  • Online ISBN: 978-1-4939-7366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics