Skip to main content

Methods to Study Solo/Orphan Quorum-Sensing Receptors

  • Protocol
  • First Online:
Quorum Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1673))

Abstract

LuxR solos/orphans are very widespread among Proteobacteria; however they are surprisingly understudied given that they are likely to play a major role in cell-cell communication in bacteria. Here we describe three simple methodologies/approaches that can be used in order to begin to study this subgroup of quorum sensing-related LuxR receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  CAS  PubMed  Google Scholar 

  2. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  3. Whitehead NA, Barnard AM, Slater H et al (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  CAS  PubMed  Google Scholar 

  4. Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–349

    Article  CAS  PubMed  Google Scholar 

  5. Fuqua C (2006) The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J Bacteriol 188:3169–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hudaiberdiev S, Choudhary KS, Vera Alvarez R et al (2015) Census of solo LuxR genes in prokaryotic genomes. Front Cell Infect Microbiol 5:20

    Article  PubMed  PubMed Central  Google Scholar 

  7. Subramoni S, Florez Salcedo DV, Suarez-Moreno ZR (2015) A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria. Front Cell Infect Microbiol 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Subramoni S, Venturi V (2009) LuxR-family 'solos': bachelor sensors/regulators of signalling molecules. Microbiology 155:1377–1385

    Article  CAS  PubMed  Google Scholar 

  9. Shadel GS, Young R, Baldwin TO (1990) Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744. J Bacteriol 172:3980–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slock J, Vanriet D, Kolibachuk D et al (1990) Critical regions of the Vibrio fischeri LuxR protein defined by mutational analysis. J Bacteriol 172:3974–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi SH, Greenberg EP (1991) The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci U S A 88:11115–11119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi SH, Greenberg EP (1992) Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fischeri LuxR protein. J Bacteriol 174:4064–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Devine JH, Shadel GS, Baldwin TO (1989) Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc Natl Acad Sci U S A 86:5688–5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nasser W, Reverchon S (2007) New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators. Anal Bioanal Chem 387:381–390

    Article  CAS  PubMed  Google Scholar 

  17. Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stevens AM, Fujita N, Ishihama A et al (1999) Involvement of the RNA polymerase alpha-subunit C-terminal domain in LuxR-dependent activation of the Vibrio fischeri luminescence genes. J Bacteriol 181:4704–4707

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang RG, Pappas KM, Brace JL et al (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974

    Article  CAS  PubMed  Google Scholar 

  20. Minogue TD, Wehland-Von Trebra M, Bernhard F et al (2002) The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol 44:1625–1635

    Article  CAS  PubMed  Google Scholar 

  21. Vannini A, Volpari C, Gargioli C et al (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yao Y, Martinez-Yamout MA, Dickerson TJ et al (2006) Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J Mol Biol 355:262–273

    Article  CAS  PubMed  Google Scholar 

  23. Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci U S A 98:1507–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21:903–913

    Article  CAS  PubMed  Google Scholar 

  25. Chugani S, Greenberg EP (2014) An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR. Front Cell Infect Microbiol 4:152

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ahmer BM (2004) Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol 52:933–945

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez JF, Venturi V (2013) A novel widespread interkingdom signaling circuit. Trends Plant Sci 18:167–174

    Article  CAS  PubMed  Google Scholar 

  28. Cox AR, Thomson NR, Bycroft B et al (1998) A pheromone-independent CarR protein controls carbapenem antibiotic synthesis in the opportunistic human pathogen Serratia marcescens. Microbiology 144:201–209

    Article  CAS  PubMed  Google Scholar 

  29. Oberto J (2013) SyntTax: a web server linking synteny to prokaryotic taxonomy. BMC Bioinformatics 14:4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, New York, pp 61–78

    Google Scholar 

  31. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  32. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2:Unit 2 3

    Google Scholar 

  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bailey TL, Johnson J, Grant CE et al (2015) The MEME suite. Nucleic Acids Res 43:W39–W49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chai Y, Winans SC (2004) Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Mol Microbiol 51:765–776

    Article  CAS  PubMed  Google Scholar 

  36. Collins CH, Arnold FH, Leadbetter JR (2005) Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol Microbiol 55:712–723

    Article  CAS  PubMed  Google Scholar 

  37. Schuster M, Urbanowski ML, Greenberg EP (2004) Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A 101:15833–15839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Urbanowski ML, Lostroh CP, Greenberg EP (2004) Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol 186:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferluga S, Bigirimana J, Hofte M et al (2007) A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence. Mol Plant Pathol 8:529–538

    Article  CAS  PubMed  Google Scholar 

  40. Van Houdt R, Aertsen A, Moons P et al (2006) N-acyl-L-homoserine lactone signal interception by Escherichia coli. FEMS Microbiol Lett 256:83–89

    Article  PubMed  Google Scholar 

  41. Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688

    Article  CAS  PubMed  Google Scholar 

  42. De Lorenzo V, Herrero M, Jakubzik U et al (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    Article  PubMed  PubMed Central  Google Scholar 

  43. Winson MK, Swift S, Hill PJ et al (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202

    Article  CAS  PubMed  Google Scholar 

  44. Hoffman LM, Jendrisak JJ, Meis RJ et al (2000) Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica 108:19–24

    Article  CAS  PubMed  Google Scholar 

  45. Stalker DM, Kolter R, Helinski DR (1982) Plasmid R6K DNA replication. I. Complete nucleotide sequence of an autonomously replicating segment. J Mol Biol 161:33–43

    Article  CAS  PubMed  Google Scholar 

  46. Metcalf WW, Jiang W, Wanner BL (1994) Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K gamma origin plasmids at different copy numbers. Gene 138:1–7

    Article  CAS  PubMed  Google Scholar 

  47. Brachmann AO, Brameyer S, Kresovic D et al (2013) Pyrones as bacterial signaling molecules. Nat Chem Biol 9:573–578

    Article  CAS  PubMed  Google Scholar 

  48. Schu DJ, Ramachandran R, Geissinger JS et al (2011) Probing the impact of ligand binding on the acyl-homoserine lactone-hindered transcription factor EsaR of Pantoea stewartii subsp. stewartii. J Bacteriol 193:6315–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gengler S, Laudisoit A, Batoko H et al (2015) Long-term persistence of Yersinia pseudotuberculosis in entomopathogenic nematodes. PLoS One 10:e0116818

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ahmer BM, Van Reeuwijk J, Timmers CD et al (1998) Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J Bacteriol 180:1185–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Michael B, Smith JN, Swift S et al (2001) SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 183:5733–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith JN, Ahmer BM (2003) Detection of other microbial species by Salmonella: expression of the SdiA regulon. J Bacteriol 185:1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dyszel JL, Soares JA, Swearingen MC et al (2010) E. coli K-12 and EHEC genes regulated by SdiA. PLoS One 5:e8946

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Venturi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Venturi, V., Subramoni, S., Sabag-Daigle, A., Ahmer, B.M.M. (2018). Methods to Study Solo/Orphan Quorum-Sensing Receptors. In: Leoni, L., Rampioni, G. (eds) Quorum Sensing. Methods in Molecular Biology, vol 1673. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7309-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7309-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7308-8

  • Online ISBN: 978-1-4939-7309-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics