Skip to main content

Characterization of Extracellular Vesicles by Surface Plasmon Resonance

  • Protocol
  • First Online:
Extracellular Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1660))

Abstract

Surface plasmon resonance (SPR ) enables real-time, label-free detection of ligand binding to target receptors immobilized on a sensing surface. SPR has emerged as a promising technique for extracellular vesicle (EV) characterization with its label-free detection scheme, and exquisite sensitivity. Among the various system configurations, nanohole-based SPR sensors are of particular interest because of their simple optical setup, tunability, and scalability. Here, we describe the characterization of circulating EVs or exosomes from human clinical samples using a nanohole-based SPR sensor, named nPLEX (nano-plasmonic exosome) sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Label-free detection and molecular profiling of EVss with a nano-plasmonic sensor. Nat Biotechnol 32:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6:709–713

    Article  CAS  Google Scholar 

  3. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  4. Rupert DL, Lasser C, Eldh M, Block S, Zhdanov VP, Lotvall JO, Bally M, Hook F (2014) Determination of EV concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936

    Article  CAS  PubMed  Google Scholar 

  5. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  PubMed  Google Scholar 

  6. Im H, Lesuffleur A, Lindquist NC, Oh SH (2009) Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. Anal Chem 81:2854–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindquist NC, Lesuffleur A, Im H, Oh SH (2009) Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab Chip 9:382–387

    Article  CAS  PubMed  Google Scholar 

  8. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815

    Article  CAS  PubMed  Google Scholar 

  9. Lesuffleur A, Im H, Lindquist NC, Oh S-H (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90:243110

    Article  Google Scholar 

  10. Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci U S A 108:11784–11789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dahlin AB, Jonsson MP, Hook F (2008) Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold. Adv Mater 20:1436–1442

    Article  CAS  Google Scholar 

  12. Lee SH, Bantz KC, Lindquist NC, Oh S-H, Haynes CL (2009) Self-assembled plasmonic nanohole arrays. Langmuir 25:13685–13693

    Article  CAS  PubMed  Google Scholar 

  13. Wittenberg NJ, Im H, Xu X, Wootla B, Watzlawik J, Warrington AE, Rodriguez M, Oh S-H (2012) High-affinity binding of remyelinating natural autoantibodies to myelin-mimicking lipid bilayers revealed by nanohole surface plasmon resonance. Anal Chem 84:6031–6039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol 2:549–554

    Article  CAS  PubMed  Google Scholar 

  15. Menezes JW, Ferreira J, Santos MJL, Cescato L, Brolo AG (2010) Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics. Adv Funct Mater 20:3918–3924

    Article  CAS  Google Scholar 

  16. Im H, Lee SH, Wittenberg NJ, Johnson TW, Lindquist NC, Nagpal P, Norris DJ, Oh S-H (2011) Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5:6244–6253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Im H, Sutherland JN, Maynard JA, Oh S-H (2012) Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal Chem 84:1941–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22

    Google Scholar 

  19. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  20. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by US NIH Grants R01-HL113156 (to H.L.), K12CA087723-11 A1 (to C.M.C.) and 1K99CA201248-01 (to H.I.), the Massachusetts General Hospital Physician Scientist Development Award (to C.M.C.), and the Department of Defense Ovarian Cancer Research Program Award W81XWH-14-1-0279 (to H.L.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar M. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Im, H., Yang, K., Lee, H., Castro, C.M. (2017). Characterization of Extracellular Vesicles by Surface Plasmon Resonance. In: Kuo, W., Jia, S. (eds) Extracellular Vesicles. Methods in Molecular Biology, vol 1660. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7253-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7253-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7251-7

  • Online ISBN: 978-1-4939-7253-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics