Skip to main content

In vivo RNAi in the Drosophila Follicular Epithelium: Analysis of Stem Cell Maintenance, Proliferation, and Differentiation

  • Protocol
  • First Online:
RNAi and Small Regulatory RNAs in Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1622))

Abstract

In vivo RNAi in Drosophila facilitates simple and rapid analysis of gene functions in a cell- or tissue-specific manner. The versatility of the UAS-GAL4 system allows to control exactly where and when during development the function of a gene is depleted. The epithelium of the ovary is a particularly good model to study in a living animal how stem cells are maintained and how their descendants proliferate and differentiate. Here I provide basic information about the publicly available reagents for in vivo RNAi, and I describe how the oogenesis system can be applied to analyze stem cells and epithelial development at a histological level. Moreover, I give helpful hints to optimize the use of the UAS-GAL4 system for RNAi induction in the follicular epithelium. Finally, I provide detailed step-by-step protocols for ovary dissection, antibody stainings, and ovary mounting for microscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perrimon N, Ni JQ, Perkins L (2010) In vivo RNAi: today and tomorrow. Cold Spring Harb Perspect Biol 2(8):a003640. doi:10.1101/cshperspect.a003640

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  3. Dietzl G, Chen D, Schnorrer F, KC S, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448(7150):151–156

    Article  CAS  PubMed  Google Scholar 

  4. Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, Yang-Zhou D, Shim HS, Tao R, Handler D, Karpowicz P, Binari R, Booker M, Brennecke J, Perkins LA, Hannon GJ, Perrimon N (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8(5):405–407. doi:10.1038/nmeth.1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim HS, Miller A, Housden A, Foos M, Randkelv S, Kelley C, Namgyal P, Villalta C, Liu LP, Jiang X, Huan-Huan Q, Xia W, Fujiyama A, Toyoda A, Ayers K, Blum A, Czech B, Neumuller R, Yan D, Cavallaro A, Hibbard K, Hall D, Cooley L, Hannon GJ, Lehmann R, Parks A, Mohr SE, Ueda R, Kondo S, Ni JQ, Perrimon N (2015) The transgenic RNAi project at Harvard Medical School: resources and validation. Genetics 201:843–852. doi:10.1534/genetics.115.180208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spradling AC (1993) Developmental genetics of oogenesis. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster, vol 1. Cold Spring Harbor Laboratory Press, Woodbury, N.Y, pp 1–70

    Google Scholar 

  7. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490):328–330

    Article  CAS  PubMed  Google Scholar 

  8. Riechmann V, Ephrussi A (2001) Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 11(4):374–383

    Article  CAS  PubMed  Google Scholar 

  9. Morris LX, Spradling AC (2011) Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 138(11):2207–2215. doi:10.1242/dev.065508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Margolis J, Spradling A (1995) Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121(11):3797–3807

    CAS  PubMed  Google Scholar 

  11. Nystul T, Spradling A (2007) An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell 1(3):277–285. doi:10.1016/j.stem.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  12. Sahai-Hernandez P, Castanieto A, Nystul TG (2012) Drosophila models of epithelial stem cells and their niches. Wiley Interdiscip Rev Dev Biol 1(3):447–457. doi:10.1002/wdev.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O'Reilly AM, Lee HH, Simon MA (2008) Integrins control the positioning and proliferation of follicle stem cells in the Drosophila ovary. J Cell Biol 182(4):801–815

    Article  PubMed  PubMed Central  Google Scholar 

  14. Song X, Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci U S A 99(23):14813–14818. doi:10.1073/pnas.232389399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kronen MR, Schoenfelder KP, Klein AM, Nystul TG (2014) Basolateral junction proteins regulate competition for the follicle stem cell niche in the Drosophila ovary. PLoS One 9(7):e101085. doi:10.1371/journal.pone.0101085

    Article  PubMed  PubMed Central  Google Scholar 

  16. Castanieto A, Johnston MJ, Nystul TG (2014) EGFR signaling promotes self-renewal through the establishment of cell polarity in Drosophila follicle stem cells. Elife 3. doi:10.7554/eLife.04437

  17. Zhang Y, Kalderon D (2001) Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410(6828):599–604. doi:10.1038/35069099

    Article  CAS  PubMed  Google Scholar 

  18. Nystul T, Spradling A (2010) Regulation of epithelial stem cell replacement and follicle formation in the Drosophila ovary. Genetics 184(2):503–515. doi:10.1534/genetics.109.109538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forbes AJ, Lin H, Ingham PW, Spradling AC (1996) Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122(4):1125–1135

    CAS  PubMed  Google Scholar 

  20. Song X, Xie T (2003) Wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila. Development 130(14):3259–3268

    Article  CAS  PubMed  Google Scholar 

  21. Hartman TR, Zinshteyn D, Schofield HK, Nicolas E, Okada A, O'Reilly AM (2010) Drosophila Boi limits hedgehog levels to suppress follicle stem cell proliferation. J Cell Biol 191(5):943–952. doi:10.1083/jcb.201007142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Page-McCaw A (2014) A matrix metalloproteinase mediates long-distance attenuation of stem cell proliferation. J Cell Biol 206(7):923–936. doi:10.1083/jcb.201403084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sahai-Hernandez P, Nystul TG (2013) A dynamic population of stromal cells contributes to the follicle stem cell niche in the Drosophila ovary. Development 140(22):4490–4498. doi:10.1242/dev.098558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vied C, Reilein A, Field NS, Kalderon D (2012) Regulation of stem cells by intersecting gradients of long-range niche signals. Dev Cell 23(4):836–848. doi:10.1016/j.devcel.2012.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Han Y, Xi R (2010) Polycomb group genes Psc and Su(z)2 restrict follicle stem cell self-renewal and extrusion by controlling canonical and noncanonical Wnt signaling. Genes Dev 24(9):933–946. doi:10.1101/gad.1901510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berns N, Woichansky I, Friedrichsen S, Kraft N, Riechmann V (2014) A genome-scale in vivo RNAi analysis of epithelial development in Drosophila identifies new proliferation domains outside of the stem cell niche. J Cell Sci 127(Pt 12):2736–2748. doi:10.1242/jcs.144519

    Article  CAS  PubMed  Google Scholar 

  27. Larkin MK, Holder K, Yost C, Giniger E, Ruohola-Baker H (1996) Expression of constitutively active Notch arrests follicle cells at a precursor stage during Drosophila oogenesis and disrupts the anterior- posterior axis of the oocyte. Development 122(11):3639–3650

    CAS  PubMed  Google Scholar 

  28. Zhang Y, Kalderon D (2000) Regulation of cell proliferation and patterning in Drosophila oogenesis by hedgehog signaling. Development 127(10):2165–2176

    CAS  PubMed  Google Scholar 

  29. McGregor JR, Xi R, Harrison DA (2002) JAK signaling is somatically required for follicle cell differentiation in Drosophila. Development 129(3):705–717

    CAS  PubMed  Google Scholar 

  30. Chang YC, Jang AC, Lin CH, Montell DJ (2013) Castor is required for hedgehog-dependent cell-fate specification and follicle stem cell maintenance in Drosophila oogenesis. Proc Natl Acad Sci U S A 110(19):E1734–E1742. doi:10.1073/pnas.1300725110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruohola H, Bremer KA, Baker D, Swedlow JR, Jan LY, Jan YN (1991) Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell 66(3):433–449

    Article  CAS  PubMed  Google Scholar 

  32. Grammont M, Irvine KD (2001) fringe and Notch specify polar cell fate during Drosophila oogenesis. Development 128(12):2243–2253

    CAS  PubMed  Google Scholar 

  33. Lopez-Schier H, St Johnston D (2001) Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev 15(11):1393–1405

    Article  CAS  PubMed  Google Scholar 

  34. Torres IL, Lopez-Schier H, St Johnston D (2003) A Notch/Delta-dependent relay mechanism establishes anterior-posterior polarity in Drosophila. Dev Cell 5(4):547–558

    Article  CAS  PubMed  Google Scholar 

  35. Assa-Kunik E, Torres IL, Schejter ED, Johnston DS, Shilo BZ (2007) Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways. Development 134(6):1161–1169

    Article  CAS  PubMed  Google Scholar 

  36. Xi R, McGregor JR, Harrison DA (2003) A gradient of JAK pathway activity patterns the anterior-posterior Axis of the follicular epithelium. Dev Cell 4(2):167–177

    Article  CAS  PubMed  Google Scholar 

  37. Deng WM, Althauser C, Ruohola-Baker H (2001) Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 128(23):4737–4746

    CAS  PubMed  Google Scholar 

  38. Wang Y, Riechmann V (2007) The role of the actomyosin cytoskeleton in coordination of tissue growth during Drosophila oogenesis. Curr Biol 17(15):1349–1355

    Article  PubMed  Google Scholar 

  39. Kolahi KS, White PF, Shreter DM, Classen AK, Bilder D, Mofrad MR (2009) Quantitative analysis of epithelial morphogenesis in Drosophila oogenesis: new insights based on morphometric analysis and mechanical modeling. Dev Biol 331(2):129–139. doi:10.1016/j.ydbio.2009.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gupta T, Schüpbach T (2003) Cct1, a phosphatidylcholine biosynthesis enzyme, is required for Drosophila oogenesis and ovarian morphogenesis. Development 130(24):6075–6087. doi:10.1242/dev.00817

    Article  CAS  PubMed  Google Scholar 

  41. Li MA, Alls JD, Avancini RM, Koo K, Godt D (2003) The large Maf factor traffic jam controls gonad morphogenesis in Drosophila. Nat Cell Biol 5(11):994–1000. doi:10.1038/ncb1058

    Article  CAS  PubMed  Google Scholar 

  42. Skora AD, Spradling AC (2010) Epigenetic stability increases extensively during Drosophila follicle stem cell differentiation. Proc Natl Acad Sci U S A 107(16):7389–7394. doi:10.1073/pnas.1003180107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pastor-Pareja JC, Xu T (2011) Shaping cells and organs in Drosophila by opposing roles of fat body-secreted collagen IV and perlecan. Dev Cell 21(2):245–256. doi:10.1016/j.devcel.2011.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 98(26):15050–15055. doi:10.1073/pnas.261408198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buszczak M, Paterno S, Lighthouse D, Bachman J, Planck J, Owen S, Skora AD, Nystul TG, Ohlstein B, Allen A, Wilhelm JE, Murphy TD, Levis RW, Matunis E, Srivali N, Hoskins RA, Spradling AC (2007) The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175(3):1505–1531. doi:10.1534/genetics.106.065961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kondo S, Booker M, Perrimon N (2009) Cross-species RNAi rescue platform in Drosophila melanogaster. Genetics 183(3):1165–1173. doi:10.1534/genetics.109.106567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Langer CC, Ejsmont RK, Schonbauer C, Schnorrer F, Tomancak P (2010) In vivo RNAi rescue in Drosophila melanogaster with genomic transgenes from Drosophila pseudoobscura. PLoS One 5(1):e8928. doi:10.1371/journal.pone.0008928

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117(4):1223–1237

    CAS  PubMed  Google Scholar 

  49. Berns N, Woichansky I, Kraft N, Hüsken U, Carl M, Riechmann V (2012) "vacuum-assisted staining": a simple and efficient method for screening in Drosophila. Dev Genes Evol 222(2):113–118. doi:10.1007/s00427-012-0391-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank I. Woichansky and R. Kasper for the pictures shown in Figs. 2 and 4 and N. Berns for comments. Research in the lab is supported by the Deutsche Forschungsgemeinschaft (DFG) and by the Deutsche Krebshilfe. I acknowledge support of the Core Facility Live Cell Imaging Mannheim at the CBTM (DFG INST 91027/9-1 FUGG, DFG INST 91027/10-1 FUGG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Riechmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Riechmann, V. (2017). In vivo RNAi in the Drosophila Follicular Epithelium: Analysis of Stem Cell Maintenance, Proliferation, and Differentiation. In: Zhang, B. (eds) RNAi and Small Regulatory RNAs in Stem Cells. Methods in Molecular Biology, vol 1622. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7108-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7108-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7106-0

  • Online ISBN: 978-1-4939-7108-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics