Skip to main content

Reverse Phase Protein Microarrays

  • Protocol
  • First Online:
Molecular Profiling

Abstract

While genes and RNA encode information about cellular status, proteins are considered the engine of the cellular machine, as they are the effective elements that drive all cellular functions including proliferation, migration, differentiation, and apoptosis. Consequently, investigations of the cellular protein network are considered a fundamental tool for understanding cellular functions.

Alteration of the cellular homeostasis driven by elaborate intra- and extracellular interactions has become one of the most studied fields in the era of personalized medicine and targeted therapy. Increasing interest has been focused on developing and improving proteomic technologies that are suitable for analysis of clinical samples. In this context, reverse-phase protein microarrays (RPPA) is a sensitive, quantitative, high-throughput immunoassay for protein analyses of tissue samples, cells, and body fluids.

RPPA is well suited for broad proteomic profiling and is capable of capturing protein activation as well as biochemical reactions such as phosphorylation, glycosylation, ubiquitination, protein cleavage, and conformational alterations across hundreds of samples using a limited amount of biological material. For these reasons, RPPA represents a valid tool for protein analyses and generates data that help elucidate the functional signaling architecture through protein-protein interaction and protein activation mapping for the identification of critical nodes for individualized or combinatorial targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liotta LA, Espina V, Mehta AI et al (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3:317–325

    Article  CAS  PubMed  Google Scholar 

  2. Paweletz CP, Charboneau L, Bichsel VE et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989

    Article  CAS  PubMed  Google Scholar 

  3. Gallagher RI, Silvestri A, Petricoin EF 3rd et al (2011) Reverse phase protein microarrays: fluorometric and colorimetric detection. Methods Mol Biol 723:275–301

    Article  CAS  PubMed  Google Scholar 

  4. Pierobon M, Wulfkuhle J, Liotta L et al (2015) Application of molecular technologies for phosphoproteomic analysis of clinical samples. Oncogene 12:805–814

    Article  Google Scholar 

  5. VanMeter AJ, Rodriguez AS, Bowman ED et al (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7:1902–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rapkiewicz A, Espina V, Zujewski JA et al (2007) The needle in the haystack: application of breast fine-needle aspirate samples to quantitative protein microarray technology. Cancer 111:173–184

    Article  CAS  PubMed  Google Scholar 

  7. Wulfkuhle JD, Berg D, Wolff C et al (2012) Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin Cancer Res 18:6426–6435

    Article  CAS  PubMed  Google Scholar 

  8. Kornblau SM, Tibes R, Qiu Y et al (2009) Functional proteomic profiling of AML predicts response and survival. Blood 113(1):154–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silvestri A, Colombatti A, Calvert VS et al (2010) Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Investig 90:787–796

    Article  CAS  PubMed  Google Scholar 

  10. Pierobon M, Silvestri A, Spira A et al (2014) A pilot phase I/II personalized therapy trial for metastatic colorectal cancer: evaluating the feasibility of protein pathway activation mapping for stratifying patients to therapy with Imatinib and Panitumumab. J Proteome Res 6:2846–2855

    Article  Google Scholar 

  11. Arnedos M, Vicier C, Loi S et al (2015) Precision medicine for metastatic breast cancer-limitations and solutions. Nat Rev Clin Oncol 12:693–704

    Article  CAS  PubMed  Google Scholar 

  12. Yap TA, Yan L, Patnaik A et al (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 29:4688–4695

    Article  CAS  PubMed  Google Scholar 

  13. Chiechi A, Novello C, Magagnoli G et al (2013) Elevated TNFR1 and serotonin in bone metastasis are correlated with poor survival following bone metastasis diagnosis for both carcinoma and sarcoma primary tumors. Clin Cancer Res 1:2473–2485

    Article  Google Scholar 

  14. Baldelli E, Bellezza G, Haura EB et al (2015) Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors. Oncotarget 20:32368–32379

    Google Scholar 

  15. Zupa A, Improta G, Silvestri A et al (2012) A pilot characterization of human lung NSCLC by protein pathway activation mapping. J Thorac Oncol 7:1755–1766

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Lu Y, Akbani R et al (2013) TCPA: a resource for cancer functional proteomics data. Nat Methods 10:1046–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bobrow MN, Harris TD, Shaughnessy KJ et al (1989) Catalyzed reporter deposition, a novel method of signal amplification Application to immunoassays. J Immunol Methods 125:279–285

    Article  CAS  PubMed  Google Scholar 

  18. Boellner S, Becker KF (2015) Recent progress in protein profiling of clinical tissues for next-generation molecular diagnostics. Expert Rev Mol Diagn 15:1277–1292

    Article  CAS  PubMed  Google Scholar 

  19. Nishizuka SS, Mills GB (2016) New era of integrated cancer biomarker discovery using reverse-phase protein arrays. Drug Metab Pharmacokinet 31:35–45

    Article  CAS  PubMed  Google Scholar 

  20. Espina V, Mehta AI, Winters ME et al (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3:2091–2100

    Article  CAS  PubMed  Google Scholar 

  21. Becker KF, Schott C, Hipp S et al (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 211:370–378

    Article  CAS  PubMed  Google Scholar 

  22. Baldelli E, Haura EB, Crinò L et al (2015) Impact of upfront cellular enrichment by laser capture microdissection on protein and phosphoprotein drug target signaling activation measurements in human lung cancer: implications for personalized medicine. Proteomics Clin Appl 9:928–937

    Article  CAS  PubMed  Google Scholar 

  23. Mueller C, deCarvalho AC, Mikkelsen T et al (2014) Glioblastoma cell enrichment is critical for analysis of phosphorylated drug targets and proteomic-genomic correlations. Cancer Res 74:818–828

    Article  CAS  PubMed  Google Scholar 

  24. Emmert-Buck MR, Bonner RF, Smith PD et al (1996) Laser capture microdissection. Science 274:998–1001

    Article  CAS  PubMed  Google Scholar 

  25. Bonner RF, Emmert-Buck M, Cole K et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481, 1483

    Article  PubMed  Google Scholar 

  26. Grote T, Siwak DR, Fritsche HA et al (2008) Validation of reverse phase protein array for practical screening of potential biomarkers in serum and plasma: accurate detection of CA19-9 levels in pancreatic cancer. Proteomics 8:3051–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davuluri G, Espina V, Petricoin EF et al (2009) Activated VEGF receptor shed into the vitreous in eyes with wet AMD: a new class of biomarkers in the vitreous with potential for predicting the treatment timing and monitoring response. Arch Ophthalmol 127:613–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mueller C, Zhou W, Vanmeter A et al (2010) The Heme degradation pathway is a promising serum biomarker source for the early detection of Alzheimer’s disease. J Alzheimers Dis 19:1081–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pin E, Federici G, Petricoin EF (2014) Preparation and use of reverse protein microarrays. Curr Protoc Protein Sci 75:Unit 27.7

    Google Scholar 

  30. Petricoin EF 3rd, Espina V, Araujo RP et al (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440

    Article  CAS  PubMed  Google Scholar 

  31. Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1:586–603

    Article  CAS  PubMed  Google Scholar 

  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  33. Stillman BA, Tonkinson JL (2000) FAST slides: a novel surface for microarrays. BioTechniques 29:630–635

    CAS  PubMed  Google Scholar 

  34. Tonkinson JL, Stillman BA (2002) Nitrocellulose: a tried and true polymer finds utility as a post-genomic substrate. Front Biosci 7:c1–12

    Article  CAS  PubMed  Google Scholar 

  35. Mueller C, Edmiston KH, Carpenter C et al (2011) One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One 6:e23780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mueller C, Liotta LA, Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4:461–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pierobon M, Gandhi L, Cristofanilli M et al (2016) Protein pathway activation mapping for multiomic based precision medicine. AJHO 12:20–24

    Google Scholar 

  38. King G, Payne S, Walker F et al (1997) A highly sensitive detection method for immunohistochemistry using biotinylated tyramine. J Pathol 183:237–241

    Article  CAS  PubMed  Google Scholar 

  39. Bobrow MN, Shaughnessy KJ, Litt GJ (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J Immunol Methods 137:103–112

    Article  CAS  PubMed  Google Scholar 

  40. Bobrow MN, Litt GJ, Shaughnessy KJ et al (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150:145–149

    Article  CAS  PubMed  Google Scholar 

  41. Hunyady B, Krempels K, Harta G et al (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem 44:1353–1362

    Article  CAS  PubMed  Google Scholar 

  42. Berggren K, Steinberg TH, Lauber WM et al (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem 276:129–143

    Article  CAS  PubMed  Google Scholar 

  43. Berggren KN, Schulenberg B, Lopez MF et al (2002) An improved formulation of SYPRO ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2:486–498

    Article  CAS  PubMed  Google Scholar 

  44. Miller WG, Gibbs EL, Jay DW et al (2006) Preparation and testing of reagent water in the clinical laboratory; approved guideline, vol 26, 4th edn. Clinical Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  45. Signore M, Reeder KA (2012) Antibody validation by western blotting. Methods Mol Biol 823:139–155

    Article  CAS  PubMed  Google Scholar 

  46. Rossner M, Yamada KM (2004) What’s in a picture? The temptation of image manipulation. J Cell Biol 166:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariaelena Pierobon MD MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Baldelli, E., Calvert, V., Hodge, A., VanMeter, A., Petricoin, E.F., Pierobon, M. (2017). Reverse Phase Protein Microarrays. In: Espina, V. (eds) Molecular Profiling. Methods in Molecular Biology, vol 1606. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6990-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6990-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6989-0

  • Online ISBN: 978-1-4939-6990-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics