Skip to main content

Reverse Phase Protein Microarrays: Fluorometric and Colorimetric Detection

  • Protocol
  • First Online:
Protein Microarray for Disease Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 723))

Abstract

The Reverse Phase Protein Microarray (RPMA) is an array platform used to quantitate proteins and their posttranslationally modified forms. RPMAs are applicable for profiling key cellular signaling pathways and protein networks, allowing direct comparison of the activation state of proteins from multiple samples within the same array. The RPMA format consists of proteins immobilized directly on a nitrocellulose substratum. The analyte is subsequently probed with a primary antibody and a series of reagents for signal amplification and detection. Due to the diversity, low concentration, and large dynamic range of protein analytes, RPMAs require stringent signal amplification methods, high quality image acquisition, and software capable of precisely analyzing spot intensities on an array. Microarray detection strategies can be either fluorescent or colorimetric. The choice of a detection system depends on (a) the expected analyte concentration, (b) type of microarray imaging system, and (c) type of sample. The focus of this chapter is to describe RPMA detection and imaging using fluorescent and colorimetric (diaminobenzidine (DAB)) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekins R, Chu F, Biggart E (1990) Multispot, multianalyte, immunoassay. Ann Biol Clin (Paris) 48:655–666

    CAS  Google Scholar 

  2. Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K et al (2003) Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell 3:317–325

    Article  PubMed  CAS  Google Scholar 

  3. Haab BB (2001) Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Devel 4:116–123

    PubMed  CAS  Google Scholar 

  4. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989

    Article  PubMed  CAS  Google Scholar 

  5. Tonkinson JL, Stillman BA (2002) Nitrocellulose: a tried and true polymer finds utility as a post-genomic substrate. Front Biosci 7:c1–c12

    Article  PubMed  CAS  Google Scholar 

  6. Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63

    Article  PubMed  CAS  Google Scholar 

  7. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    PubMed  CAS  Google Scholar 

  8. Espina V, Mehta AI, Winters ME, Calvert V, Wulfkuhle J et al (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3:2091–2100

    Article  PubMed  CAS  Google Scholar 

  9. Espina V, Woodhouse EC, Wulfkuhle J, Asmussen HD, Petricoin EF III et al (2004) Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods 290:121–133

    Article  PubMed  CAS  Google Scholar 

  10. Celis JE, Gromov P (2003) Proteomics in translational cancer research: toward an integrated approach. Cancer Cell 3:9–15

    Article  PubMed  CAS  Google Scholar 

  11. Hunyady B, Krempels K, Harta G, Mezey E (1996) Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. J Histochem Cytochem 44:1353–1362

    Article  PubMed  CAS  Google Scholar 

  12. Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125:279–285

    Article  PubMed  CAS  Google Scholar 

  13. Bobrow MN, Shaughnessy KJ, Litt GJ (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J Immunol Methods 137:103–112

    Article  PubMed  CAS  Google Scholar 

  14. Bobrow MN, Litt GJ, Shaughnessy KJ, Mayer PC, Conlon J (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150:145–149

    Article  PubMed  CAS  Google Scholar 

  15. King G, Payne S, Walker F, Murray GI (1997) A highly sensitive detection method for immunohistochemistry using biotinylated tyramine. J Pathol 183:237–241

    Article  PubMed  CAS  Google Scholar 

  16. Wiese R (2003) Analysis of several fluorescent detector molecules for protein microarray use. Luminescence 18:25–30

    Article  PubMed  CAS  Google Scholar 

  17. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ et al (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    Article  PubMed  CAS  Google Scholar 

  18. Lesaicherre ML, Uttamchandani M, Chen GY, Yao SQ (2002) Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg Med Chem Lett 12:2085–2088

    Article  PubMed  CAS  Google Scholar 

  19. Ekins R, Chu F, Biggart E (1990) Fluorescence spectroscopy and its application to a new generation of high sensitivity, multi-microspot, multianalyte, immunoassay. Clin Chim Acta 194:91–114

    Article  PubMed  CAS  Google Scholar 

  20. Bacarese-Hamilton T, Mezzasoma L, Ingham C, Ardizzoni A, Rossi R et al (2002) Detection of allergen-specific IgE on microarrays by use of signal amplification techniques. Clin Chem 48:1367–1370

    PubMed  CAS  Google Scholar 

  21. Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF et al (2002) Protein microarray technology. Trends Biotechnol 20:160–166

    Article  PubMed  CAS  Google Scholar 

  22. VanMeter AJ, Rodriguez AS, Bowman ED, Jen J, Harris CC et al (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7:1902–1924

    Article  PubMed  CAS  Google Scholar 

  23. Gulmann C, Sheehan KM, Conroy RM, Wulfkuhle JD, Espina V et al (2009) Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer. J Pathol 218:514–519

    Article  PubMed  CAS  Google Scholar 

  24. Gulmann C, Espina V, Petricoin E III, Longo DL, Santi M et al (2005) Proteomic analysis of apoptotic pathways reveals prognostic factors in follicular lymphoma. Clin Cancer Res 11:5847–5855

    Article  PubMed  CAS  Google Scholar 

  25. Petricoin EF III, Espina V, Araujo RP, Midura B, Yeung C et al (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440

    Article  PubMed  CAS  Google Scholar 

  26. Wulfkuhle JD, Speer R, Pierobon M, Laird J, Espina V et al (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7:1508–1517

    Article  PubMed  CAS  Google Scholar 

  27. Hsu SM, Soban E (1982) Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. J Histochem Cytochem 30:1079–1082

    Article  PubMed  CAS  Google Scholar 

  28. Pawley JB (1995) Handbook of biological confocal microscopy. Plenum, New York

    Google Scholar 

  29. Berggren K, Steinberg TH, Lauber WM, Carroll JA, Lopez MF et al (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem 276:129–143

    Article  PubMed  CAS  Google Scholar 

  30. Berggren KN, Schulenberg B, Lopez MF, Steinberg TH, Bogdanova A et al (2002) An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2:486–498

    Article  PubMed  CAS  Google Scholar 

  31. Mackintosh JA, Choi HY, Bae SH, Veal DA, Bell PJ et al (2003) A fluorescent natural product for ultra sensitive detection ofproteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3:2273–2288

    Article  PubMed  CAS  Google Scholar 

  32. Fowler S (1996) Protein staining and immunodetection using colloidal gold. In: Walker J (ed) Protein protocols handbook. Humana, Totowa, NJ, pp 275–287

    Chapter  Google Scholar 

  33. Switzer RC III, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98:231–237

    Article  PubMed  CAS  Google Scholar 

  34. Huels C, Muellner S, Meyer HE, Cahill DJ (2002) The impact of protein biochips and microarrays on the drug development process. Drug Discov Today 7:S119–S124

    Article  PubMed  CAS  Google Scholar 

  35. Grote T, Siwak DR, Fritsche HA, Joy C, Mills GB et al (2008) Validation of reverse phase protein array for practical screening of potential biomarkers in serum and plasma: accurate detection of CA19-9 levels in pancreatic cancer. Proteomics 8:3051–3060

    Article  PubMed  CAS  Google Scholar 

  36. Korf U, Derdak S, Tresch A, Henjes F, Schumacher S et al (2008) Quantitative protein microarrays for time-resolved measurements of protein phosphorylation. Proteomics 8:4603–4612

    Article  PubMed  CAS  Google Scholar 

  37. Korf U, Wiemann S (2005) Protein microarrays as a discovery tool for studying protein-protein interactions. Expert Rev Proteomics 2:13–26

    Article  PubMed  CAS  Google Scholar 

  38. Espina V, Liotta LA, Petricoin EF III (2009) Reverse-phase protein microarrays for theranostics and patient tailored therapy. Methods Mol Biol 520:89–105

    Article  PubMed  CAS  Google Scholar 

  39. Zhou G, Li H, DeCamp D, Chen S, Shu H et al (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 1:117–124

    Article  PubMed  CAS  Google Scholar 

  40. Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR III (2002) Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal Chem 74:1650–1657

    Article  PubMed  CAS  Google Scholar 

  41. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  42. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  PubMed  CAS  Google Scholar 

  43. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M et al (2006) Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 5:2512–2521

    Article  PubMed  CAS  Google Scholar 

  44. Stanislaus R, Carey M, Deus HF, Coombes K, Hennessy BT et al (2008) RPPAML/RIMS: a metadata format and an information management system for reverse phase protein arrays. BMC Bioinformatics 9:555

    Article  PubMed  Google Scholar 

  45. Newland J, Jones J (1980) Fluorometry. In: Hicks R, Schenken JR, Steinrauf MA (eds) Laboratory instrumentation. Harper & Row, Hagerstown, MD, pp 61–66

    Google Scholar 

  46. VanMeter A, Signore M, Pierobon M, Espina V, Liotta LA et al (2007) Reverse-phase protein microarrays: application to biomarkerdiscovery and translational medicine. Expert Rev Mol Diagn 7:625–633

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Espina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gallagher, R.I., Silvestri, A., Petricoin, E.F., Liotta, L.A., Espina, V. (2011). Reverse Phase Protein Microarrays: Fluorometric and Colorimetric Detection. In: Wu, C. (eds) Protein Microarray for Disease Analysis. Methods in Molecular Biology, vol 723. Humana Press. https://doi.org/10.1007/978-1-61779-043-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-043-0_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-042-3

  • Online ISBN: 978-1-61779-043-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics