Skip to main content

Probing Biological Trace Metals with Fluorescent Indicators

  • Protocol
  • First Online:
Metals in the Brain

Part of the book series: Neuromethods ((NM,volume 124))

Abstract

Fluorescent indicators represent powerful tools for studying trace metal homeostasis and signaling events within live cells and tissues. Because trace metal ion concentrations are buffered at very low levels, fluorescent indicators must engage in competitive exchange equilibria with metalloproteins and other endogenous ligands. A meaningful interpretation of the fluorescence response requires therefore a detailed knowledge of the indicator properties and the underlying metal exchange equilibria. In this context, the rigorous characterization of the metal ion binding properties of the fluorescence indicator is of critical importance. After reviewing basic concepts of solution chemistry, this chapter offers an overview of various approaches that can be utilized for the determination of metal stability constants. Special consideration is given to common challenges encountered in the measurement of stability constants as well as to potential artifacts when employing fluorescence indicators within the complex chemical environment of live cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palmiter RD et al (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A 93:14934–14939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Danscher G, Stoltenberg M (2005) Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells. J Histochem Cytochem 53:141–153

    Article  CAS  PubMed  Google Scholar 

  3. Anderson CT et al (2015) Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci U S A 112:E2705–E2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalappa BI et al (2015) AMPA receptor inhibition by synaptically released zinc. Proc Natl Acad Sci U S A 112:15749–15754

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Giese A et al (2005) Mouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion protein. J Mol Neurosci 27:347–354

    Article  CAS  PubMed  Google Scholar 

  6. Schlief ML et al (2005) NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 25:239–246

    Article  CAS  PubMed  Google Scholar 

  7. Gaier ED et al (2013) Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 91:2–19

    CAS  PubMed  Google Scholar 

  8. Opazo CM et al (2014) Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci 6:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gaier ED et al (2014) In vivo and in vitro analyses of amygdalar function reveal a role for copper. J Neurophysiol 111:1927–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaier ED et al (2014) Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function. Ann N Y Acad Sci 1314:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doreulee N et al (1997) Suppression of long-term potentiation in hippocampal slices by copper. Hippocampus 7:666–669

    Article  CAS  PubMed  Google Scholar 

  12. Leiva J et al (2003) Copper interaction on the long-term potentiation. Arch Ital Biol 141:149–155

    CAS  PubMed  Google Scholar 

  13. Leiva J et al (2009) Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res 1256:69–75

    Article  CAS  PubMed  Google Scholar 

  14. Salazar-Weber NL, Smith JP (2011) Copper inhibits NMDA receptor-independent LTP and modulates the paired-pulse ratio after LTP in mouse hippocampal slices. Int J Alzheimers Dis 2011:864753

    PubMed  PubMed Central  Google Scholar 

  15. Muñoz P et al (2011) Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity. J Biol Chem 286:13382–13392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Liu K et al (2016) Transferrin receptor controls AMPA receptor trafficking efficiency and synaptic plasticity. Sci Rep 6:21019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sensi SL et al (2011) The neurophysiology and pathology of brain zinc. J Neurosci 31:16076–16085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scheiber IF et al (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  19. Crichton RR et al (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm 118:301–314

    Article  CAS  PubMed  Google Scholar 

  20. Barnham KJ, Bush AI (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749

    Article  CAS  PubMed  Google Scholar 

  21. Brown RJC, Milton MJT (2005) Analytical techniques for trace element analysis: an overview. Trends Anal Chem 24:266–274

    Article  CAS  Google Scholar 

  22. Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11:121–127

    Article  CAS  PubMed  Google Scholar 

  23. McRae R et al (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    Article  CAS  PubMed  Google Scholar 

  24. Qin Z et al (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3:28–37

    Article  CAS  PubMed  Google Scholar 

  25. Pushie MJ et al (2014) Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev 114:8499–8541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hare DJ et al (2015) Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution. Chem Soc Rev 44:5941–5958

    Article  CAS  PubMed  Google Scholar 

  27. Que EL et al (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  28. Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. Acc Chem Res 42:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen C, New EJ (2015) What has fluorescent sensing told us about copper and brain malfunction? Metallomics 7:56–65

    Article  CAS  PubMed  Google Scholar 

  30. Rae TD et al (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  CAS  PubMed  Google Scholar 

  31. Colvin RA et al (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  CAS  PubMed  Google Scholar 

  32. Hitomi Y et al (2001) Extreme zinc-binding thermodynamics of the metal sensor/regulator protein, ZntR. J Am Chem Soc 123:8614–8615

    Article  CAS  PubMed  Google Scholar 

  33. Bird AJ et al (2003) Zinc fingers can act as Zn(II) sensors to regulate transcriptional activation domain function. EMBO J 22:5137–5146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guerrerio AL, Berg JM (2004) Metal ion affinities of the zinc finger domains of the metal responsive element-binding transcription factor-1 (MTF1). Biochemistry 43:5437–5444

    Article  CAS  PubMed  Google Scholar 

  35. Changela A et al (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  CAS  PubMed  Google Scholar 

  36. Wegner SV et al (2011) The tightly regulated copper window in yeast. Chem Commun 47:2571–2573

    Article  CAS  Google Scholar 

  37. Mills SA, Marletta MA (2005) Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry 44:13553–13559

    Article  CAS  PubMed  Google Scholar 

  38. Fahrni CJ (2013) Synthetic fluorescent probes for monovalent copper. Curr Opin Chem Biol 17:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carter KP et al (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maret W (2015) Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 7:202–211

    Article  CAS  PubMed  Google Scholar 

  41. Qin Y et al (2013) Direct comparison of a genetically encoded sensor and small molecule indicator: implications for quantification of cytosolic Zn(II). ACS Chem Biol 8:2366–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martell AE, Motekaitis RJ (1992) The determination and use of stability constants. Wiley-VCH, New York

    Google Scholar 

  43. Schwarzenbach G (1957) Complexometric titrations. Interscience Publisher, New York

    Google Scholar 

  44. Martell AE et al (2004) NIST standard reference database 46 version 8.0: NIST critically selected stability constants of metal complexes (National Institute of Standards and Technology)

    Google Scholar 

  45. Hansen LD et al (2011) Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry: methods, instruments, and uncertainties. Anal Biochem 409:220–229

    Article  CAS  PubMed  Google Scholar 

  46. Brown KR et al (2002) Structures of the cuprous-thiolate clusters of the Mac1 and Ace1 transcriptional activators. Biochemistry 41:6469–6476

    Article  CAS  PubMed  Google Scholar 

  47. Gans P et al (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43:1739–1753

    Article  CAS  PubMed  Google Scholar 

  48. Gans P, O’Sullivan B (2000) GLEE, a new computer program for glass electrode calibration. Talanta 51:33–37

    Article  CAS  PubMed  Google Scholar 

  49. Binstead RA, Zuberbühler AD (2001) SPECFIT Global Analysis System (Spectrum Software Associates, Marlborough MA 01752)

    Google Scholar 

  50. Orte A et al (2005) Absorption and emission study of 2′,7′-difluorofluorescein and its excited-state buffer-mediated proton exchange reactions. J Phys Chem A 109:734–747

    Google Scholar 

  51. Alvarez-Pez JM et al (2001) Fluorescein excited-state proton exchange reactions: nanosecond emission kinetics and correlation with steady-state fluorescence intensity. J Phys Chem A 105:6320–6332

    Article  CAS  Google Scholar 

  52. Yguerabide J et al (1994) Steady-state fluorescence method for evaluating excited state proton reactions: application to fluorescein. Photochem Photobiol 60:435–441

    Article  CAS  Google Scholar 

  53. Rurack K, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31:116–127

    Article  CAS  PubMed  Google Scholar 

  54. Chaudhry AF et al (2010) Kinetically controlled photoinduced electron transfer switching in Cu(I)-responsive fluorescent probes. J Am Chem Soc 132:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aslamkhan AG et al (2002) Preparation of metal ion buffers for biological experimentation: a methods approach with emphasis on iron and zinc. J Exp Zool 292:507–522

    Article  CAS  PubMed  Google Scholar 

  56. Fischer BE et al (1979) Metal ion-buffer interactions—stability of binary and ternary complexes containing 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) and adenosine 5′-triphosphate (ATP). Eur J Biochem 94:523–530

    Google Scholar 

  57. Good NE et al (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477

    Article  CAS  PubMed  Google Scholar 

  58. Good NE, Izawa S (1972) Hydrogen ion buffers. Methods Enzymol 24:53–68

    Article  CAS  PubMed  Google Scholar 

  59. Ferguson WJ et al (1980) Hydrogen ion buffers for biological research. Anal Biochem 104:300–310

    Article  CAS  PubMed  Google Scholar 

  60. Nakon R, Krishnamoorthy CR (1983) Free-metal ion depletion by “Good’s” buffers. Science 221:749–750

    Article  CAS  PubMed  Google Scholar 

  61. Krishnamoorthy CR, Nakon R (1991) Free metal ion depletion by Good’s buffers. IV. Bicine 1: 1 and 2: 1 complexes with Mg (II), Ca (II), Mn (II), Co (II), Ni (II), Cu (II) and Zn (II). J Coord Chem 23:233–243

    Article  CAS  Google Scholar 

  62. Gregory JD, Sajdera SW (1970) Interference in the Lowry method for protein determination. Science 169:97–98

    Article  CAS  PubMed  Google Scholar 

  63. Kaushal V, Barnes LD (1986) Effect of zwitterionic buffers on measurement of small masses of protein with bicinchoninic acid. Anal Biochem 157:291–294

    Article  CAS  PubMed  Google Scholar 

  64. Yu Q et al (1997) Avoiding interferences from Good’s buffers: a contiguous series of noncomplexing tertiary amine buffers covering the entire range of pH 3-11. Anal Biochem 253:50–56

    Article  CAS  PubMed  Google Scholar 

  65. Kandegedara A, Rorabacher DB (1999) Noncomplexing tertiary amines as “Better” buffers covering the range of pH 3-11. Temperature dependence of their acid dissociation constants. Anal Chem 71:3140–3144

    Article  CAS  PubMed  Google Scholar 

  66. Alderighi L et al (1999) Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  67. Anderegg G et al (1977) Pyridine derivatives as complexing agents. XI. Thermodynamics of metal complex formation with bis-, tris-and tetrakis ((2-pyridyl) methyl) amines. Helv Chim Acta 60:123–140

    Article  CAS  Google Scholar 

  68. Mirzahosseini A et al (2015) The comprehensive acid-base characterization of glutathione. Chem Phys Lett 622:50–56

    Article  CAS  Google Scholar 

  69. Morgan MT et al (2013) Fluorescent probes for monovalent copper. In: Culotta VC, Scott RS (eds) Metals in cells. Wiley, Chichester, UK, pp 65–83

    Google Scholar 

  70. Powell NA et al (1996) Complexes of rhodium with thiobis(ethylenenitrilo)tetraacetic acid; a potential bifunctional chelate for use in radiotherapy. J Chem Soc Dalton Trans:467–471

    Google Scholar 

  71. Mi L, Zuberbühler AD (1991) Cuprous complexes and dioxygen. Part 11. Concomitant one-and two-electron reduction of O2 by the aq Cu(I) ion. Helv Chim Acta 74:1679–1688

    Article  CAS  Google Scholar 

  72. Korzhavyi PA et al (2012) Exploring monovalent copper compounds with oxygen and hydrogen. Proc Natl Acad Sci U S A 109:686–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Balakrishnan KP et al (1984) Stabilities and redox properties of Cu(I) and Cu(II) complexes with macrocyclic ligands containing the N2S2 donor set. Helv Chim Acta 67:1060–1069

    Article  CAS  Google Scholar 

  74. Königsberger L-C et al (2015) Formation constants of copper(I) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye. Dalton Trans 44:20413–20425

    Article  PubMed  CAS  Google Scholar 

  75. Xiao Z et al (2011) Unification of the copper(I) binding affinities of the metallo-chaperones Atx1, Atox1 and related proteins: detection probes and affinity standards. J Biol Chem 286:11047–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xiao Z, Wedd AG (2010) The challenges of determining metal-protein affinities. Nat Prod Rep 27:768–789

    Article  CAS  PubMed  Google Scholar 

  77. Xiao Z et al (2013) Evaluation of quantitative probes for weaker Cu(i) binding sites completes a set of four capable of detecting Cu(i) affinities from nanomolar to attomolar. Metallomics 5:501–513

    Article  CAS  PubMed  Google Scholar 

  78. Bagchi P et al (2013) Robust affinity standards for Cu(I) biochemistry. J Am Chem Soc 135:18549–18559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Milazzo G, Caroli S (1978) Tables of standard electrode potentials. Wiley, New York

    Google Scholar 

  80. Bernardo MM et al (1992) Comparison of the influence of saturated nitrogen and sulfur donor atoms on the properties of copper(II/I)-macrocyclic polyamino polythiaether ligand complexes: redox potentials and protonation and stability constants of CuIL species and new structural data. Inorg Chem 31:191–198

    Article  CAS  Google Scholar 

  81. Fenwick F (1926) The equilibrium between cupric ion, cuprous ion and metallic copper. J Am Chem Soc 48:860–870

    Article  CAS  Google Scholar 

  82. Hawkins CJ, Perrin DD (1963) Oxidation-reduction potentials of metal complexes in water. Part II. Copper complexes with 2,9-dimethyl- and 2-chloro-1,10-phenanthroline. J Chem Soc 2996–3002

    Google Scholar 

  83. Addison AW (1989) Is ligand topology an influence on the redox potentials of copper complexes? Inorg Chim Acta 162:217–220

    Article  CAS  Google Scholar 

  84. Morgan MT et al (2016) Rational design of a water-soluble, lipid-compatible fluorescent probe for Cu(I) with sub-part-per-trillion sensitivity. Chem Sci 7:1468–1473

    Article  CAS  PubMed  Google Scholar 

  85. Baker JO (1988) Metal-buffered systems. Methods Enzymol 158:33–55

    Article  CAS  PubMed  Google Scholar 

  86. Po HN, Senozan NM (2001) The Henderson-Hasselbalch equation: its history and limitations. J Chem Educ 78:1499–1503

    Article  CAS  Google Scholar 

  87. Bers DM et al (1994) A practical guide to the preparation of Ca(II) buffers. Methods Cell Biol 40:3–29

    Article  CAS  PubMed  Google Scholar 

  88. Bers DM et al (2010) A practical guide to the preparation of Ca(II) buffers. Methods Cell Biol 99:1–26

    Article  CAS  PubMed  Google Scholar 

  89. Perrin DD, Dempsey B (1974) Buffers for pH and metal ion control. Chapman and Hall, New York

    Google Scholar 

  90. Price KA et al (2012) The challenges of using a copper fluorescent sensor (CS1) to track intracellular distributions of copper in neuronal and glial cells. Chem Sci 3:2748–2759

    Article  CAS  Google Scholar 

  91. Vinkenborg JL et al (2009) Genetically encoded FRET sensors to monitor intracellular Zn(II) homeostasis. Nat Methods 6:737–740

    Article  CAS  PubMed  Google Scholar 

  92. Qin Y et al (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn(II) with genetically encoded sensors. Proc Natl Acad Sci U S A 108:7351–7356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cody J et al (2008) Differential tuning of the electron transfer parameters in 1,3,5-triarylpyrazolines: a rational design approach for optimizing the contrast ratio of fluorescent probes. J Am Chem Soc 130:13023–13032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nowakowski AB, Petering DH (2011) Reactions of the fluorescent sensor, zinquin, with the zinc-proteome: adduct formation and ligand substitution. Inorg Chem 50:10124–10133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Meeusen JW et al (2012) Reaction of metal-binding ligands with the zinc proteome: zinc sensors and N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine. Inorg Chem 51:3625–3632

    Google Scholar 

  96. Staszewska A et al (2013) Ternary complex formation and competition quench fluorescence of ZnAF family zinc sensors. Metallomics 5:1483–1490

    Article  CAS  PubMed  Google Scholar 

  97. Morgan MT et al (2014) Probing ternary complex equilibria of crown ether ligands by time-resolved fluorescence spectroscopy. J Phys Chem B 118:14196–14202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nowakowski AB et al (2015) Chemical biological properties of zinc sensors TSQ and Zinquin: formation of sensor-Zn-protein adducts versus Zn(Sensor)(2) complexes. Inorg Chem 54:11637–11647

    Article  CAS  PubMed  Google Scholar 

  99. Karim MR, Petering DH (2016) Newport Green, a fluorescent sensor of weakly bound cellular Zn(II): competition with proteome for Zn(II). Metallomics 8:201–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marszalek I et al (2016) Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences. J Inorg Biochem 161:107–114

    Article  CAS  PubMed  Google Scholar 

  101. Grynkiewicz G et al (1985) A new generation of Ca(II) indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  102. Thompson K et al (2012) Predicting and avoiding subcellular compartmentalization artifacts arising from acetoxymethyl ester calcium imaging probes. The case of fluo-3 AM and a general account of the phenomenon including a problem avoidance chart. Biotech Histochem 87:468–483

    Article  CAS  PubMed  Google Scholar 

  103. Morgan MT et al (2011) Designed to dissolve: suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone. J Am Chem Soc 133:15906–15909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bergstrom F et al (2002) Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology. J Am Chem Soc 124:196–204

    Article  PubMed  CAS  Google Scholar 

  105. Ohsaki Y et al (2010) A pitfall in using BODIPY dyes to label lipid droplets for fluorescence microscopy. Histochem Cell Biol 133:477–480

    Article  CAS  PubMed  Google Scholar 

  106. Tleugabulova D et al (2002) Characterization of bodipy dimers formed in a molecularly confined environment. J Phys Chem B 106:13133–13138

    Article  CAS  Google Scholar 

  107. Akins DL (1986) Theory of Raman scattering by aggregated molecules. J Phys Chem 90:1530–1534

    Article  CAS  Google Scholar 

  108. Akins DL, Macklin JW (1989) Dependence of Raman scattering by aggregated 2, 2-cyanine on pH and excitation wavelength. J Phys Chem 93:5999–6007

    Article  CAS  Google Scholar 

  109. Chen SJ et al (2016) Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater Horiz 3:283–293

    Article  CAS  Google Scholar 

  110. Wang H et al (2015) AIE luminogens: emission brightened by aggregation. Mater Today 18:365–377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Institutes of Health under the award number R01GM067169 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Fahrni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fahrni, C.J., Bourassa, D., Dikdan, R. (2017). Probing Biological Trace Metals with Fluorescent Indicators. In: White, A. (eds) Metals in the Brain. Neuromethods, vol 124. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6918-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6918-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6916-6

  • Online ISBN: 978-1-4939-6918-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics