Skip to main content

In Situ Imaging of Zinc with Synthetic Fluorescent Probes

  • Chapter
  • First Online:
Zinc Signaling
  • 714 Accesses

Abstract

Small-molecule synthetic fluorescent probes represent powerful tools for interrogating labile zinc pools in biology. Transported into cells through passive diffusion, they are particularly well suited for visualizing dynamic changes of zinc in living systems. When employing fluorescent probes for visualizing biological zinc, there are important limitations that differentiate this approach from quantitative microanalytical techniques. Notably, fluorescent probes engage in a competitive exchange equilibrium with endogenous ligands and proteins and thus detect changes of labile Zn(II) pools rather than total cellular zinc levels. Focusing on design approaches and photophysical concepts, this chapter offers an overview of the most widely employed fluorogenic and ratiometric probes for the detection of Zn(II) in a biological environment, discusses concepts relevant for the design and application of Zn(II)-responsive probes for two-photon excitation microscopy, and outlines current challenges and limitations of their application in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albota MA et al (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37:7352–7356

    Article  CAS  PubMed  Google Scholar 

  • Baek NY et al (2012) A highly sensitive two-photon fluorescent probe for mitochondrial zinc ions in living tissue. Chem Commun 48:4546–4548

    Article  CAS  Google Scholar 

  • Bourassa D et al (2018) Chromis-1, a ratiometric fluorescent probe optimized for two-photon microscopy reveals dynamic changes in labile Zn(II) in differentiating oligodendrocytes. ACS Sens 3:458–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter KP et al (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabosseau P et al (2018) Sensors for measuring subcellular zinc pools. Metallomics 10:229–239

    Article  CAS  PubMed  Google Scholar 

  • Chang CJ et al (2004) ZP8, a neuronal zinc sensor with improved dynamic range; imaging zinc in hippocampal slices with two-photon microscopy. Inorg Chem 43:6774–6779

    Article  CAS  PubMed  Google Scholar 

  • Chen YC et al (2015) Photoluminescence imaging of Zn2+ in living systems. Chem Soc Rev 44:4517–4546

    Article  CAS  PubMed  Google Scholar 

  • Cole TB et al (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci U S A 96:1716–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colvin R et al (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  CAS  PubMed  Google Scholar 

  • Danish IA et al (2011) Two-photon probes for Zn2+ ions with various dissociation constants. Detection of Zn2+ ions in live cells and tissues by two-photon microscopy. Chem Asian J 6:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Danscher G (1981) Histochemical-demonstration of heavy-metals - a revised version of the sulfide silver method suitable for both light and electron-microscopy. Histochemistry 71:1–16

    Article  CAS  PubMed  Google Scholar 

  • Denk W et al (1990) 2-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  • Devergnas S et al (2004) Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem Pharmacol 68:699–709

    Article  CAS  PubMed  Google Scholar 

  • Drobizhev M et al (2011) Two-photon absorption properties of fluorescent proteins. Nat Meth 8:393–399

    Article  CAS  Google Scholar 

  • Fahrni C, O’Halloran T (1999) Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J Am Chem Soc 121:11448–11458

    Article  CAS  Google Scholar 

  • Fahrni C et al (2003) Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophores: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation. J Am Chem Soc 125:3799–3812

    Article  CAS  PubMed  Google Scholar 

  • Fahrni CJ et al (2017) Probing biological trace metals with fluorescent indicators. In: White AR (ed) Metals in the brain: measurement and imaging, Neuromethods, vol 124. Springer, New York, pp 71–107

    Chapter  Google Scholar 

  • Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    Article  CAS  PubMed  Google Scholar 

  • Frederickson CJ et al (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Meth 20:91–103

    Article  CAS  Google Scholar 

  • Gee KR et al (2002a) Measuring zinc in living cells: a new generation of sensitive and selective fluorescent probes. Cell Calcium 31:245–251

    Article  CAS  PubMed  Google Scholar 

  • Gee KR et al (2002b) Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J Am Chem Soc 124:776–778

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G et al (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Hara T et al (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67:283–301

    Article  CAS  PubMed  Google Scholar 

  • Heinz U et al (2005) On the competition for available zinc. J Biol Chem 280:3197–3207

    Article  CAS  PubMed  Google Scholar 

  • Hessels AM, Merkx M (2014) Genetically-encoded FRET-based sensors for monitoring Zn2+ in living cells. Metallomics 7:258

    Article  CAS  PubMed  Google Scholar 

  • Hirano T et al (2000) Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J Am Chem Soc 122:12399–12400

    Article  CAS  Google Scholar 

  • Hirano T et al (2002) Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J Am Chem Soc 124:6555–6562

    Article  CAS  PubMed  Google Scholar 

  • Huang CB et al (2010) Two-photon fluorescence sensors. Prog Chem 22:2408–2419

    CAS  Google Scholar 

  • Hunt JR, Dawlaty JM (2018) Photodriven deprotonation of alcohols by a quinoline photobase. J Phys Chem A 122:7931–7940

    Article  CAS  PubMed  Google Scholar 

  • Jiang PJ, Guo ZJ (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229

    Article  CAS  Google Scholar 

  • Jobsis PD et al (2007) Limited utility of acetoxymethyl (AM)-based intracellular delivery systems, in vivo: interference by extracellular esterases. J Microsc 226:74–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ID, Spence MTZ (2010) Molecular probes handbook, a guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies

    Google Scholar 

  • Kambe T et al (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95:749–784

    Article  CAS  PubMed  Google Scholar 

  • Kamiya M, Johnsson K (2010) Localizable and highly sensitive calcium indicator based on a BODIPY fluorophore. Anal Chem 82:6472–6479

    Article  CAS  PubMed  Google Scholar 

  • Karim M, Petering D (2016) Newport green, a fluorescent sensor of weakly bound cellular Zn2+: competition with proteome for Zn2+. Metallomics 8:201–210

    Article  CAS  PubMed  Google Scholar 

  • Khan M et al (2014) Two-photon imaging of Zn2+ dynamics in mossy fiber boutons of adult hippocampal slices. Proc Natl Acad Sci USA 111:6786–6791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi K et al (2004) Zinc sensing for cellular application. Curr Opin Chem Biol 8:182–191

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Cho BR (2011) Two-photon fluorescent probes for metal ions. Chem Asian J 6:58–69

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Cho BR (2015) Small-molecule two-photon probes for bioimaging applications. Chem Rev 115:5014–5055

    Article  CAS  PubMed  Google Scholar 

  • Kim HM et al (2008) Two-photon fluorescent probes for intracellular free zinc ions in living tissue. Angew Chem Int Ed Engl 47:5167–5170

    Article  CAS  PubMed  Google Scholar 

  • Kiyose K et al (2006) Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. J Am Chem Soc 128:6548–6549

    Article  CAS  PubMed  Google Scholar 

  • Kobat D et al (2009) Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 17:13354–13364

    Article  PubMed  Google Scholar 

  • Komatsu K et al (2007) Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J Am Chem Soc 129:13447–13454

    Article  CAS  PubMed  Google Scholar 

  • Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462

    Article  Google Scholar 

  • Lan SC, Liu YH (2015) TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening. Spectrochim Acta A 139:49–53

    Article  CAS  Google Scholar 

  • Lee HJ et al (2016) A two-photon fluorescent probe for lysosomal zinc ions. Chem Commun 52:124–127

    Article  CAS  Google Scholar 

  • Li D et al (2015) Genetic targeting of a small fluorescent zinc indicator to cell surface for monitoring zinc secretion. ACS Chem Biol 10:1054–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim NC, Bruckner C (2004) DPA-substituted coumarins as chemosensors for zinc(II): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin. Chem Commun:1094–1095

    Google Scholar 

  • Lim NC et al (2004) Illuminating zinc in biological systems. Chem Eur J 11:38–49

    Article  CAS  PubMed  Google Scholar 

  • Liu ZP et al (2014) In vivo ratiometric Zn2+ imaging in zebrafish larvae using a new visible light excitable fluorescent sensor. Chem Commun 50:1253–1255

    Article  CAS  Google Scholar 

  • Liu HW et al (2017) Molecular engineering of two-photon fluorescent probes for bioimaging applications. Meth Appl Fluoresc 5:012003

    Article  CAS  Google Scholar 

  • Los GV et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  PubMed  Google Scholar 

  • Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    Article  CAS  PubMed  Google Scholar 

  • Lu Q et al (2016) Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int J Physiol Pathophysiol Pharmacol 8:35–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadevan IB et al (1996) The synthesis of Zinquin ester and Zinquin acid, zinc(II)-specific fluorescing agents for use in the study of biological zinc(II). Aust J Chem 49:561–568

    Article  CAS  Google Scholar 

  • Makarov NS et al (2008) Two-photon absorption standards in the 550-1600 nm excitation wavelength range. Opt Express 16:4029–4047

    Article  CAS  PubMed  Google Scholar 

  • Maret W (2015) Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 7:202–211

    Article  CAS  PubMed  Google Scholar 

  • Marszalek I et al (2016) Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences. J Inorg Biochem 161:107–114

    Article  CAS  PubMed  Google Scholar 

  • Marszalek I et al (2018) Ternary Zn(II) complexes of FluoZin-3 and the low molecular weight component of the exchangeable cellular zinc pool. Inorg Chem 57:9826–9838

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S et al (2002) A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion. J Am Chem Soc 124:10650–10651

    Article  CAS  PubMed  Google Scholar 

  • Masanta G et al (2011) A mitochondrial-targeted two-photon probe for zinc ion. J Am Chem Soc 133:5698–5700

    Article  CAS  PubMed  Google Scholar 

  • McRae R et al (2009) In situ imaging of metals in cells and tissues. Chem Rev 109:4780–4827

    Article  CAS  PubMed  Google Scholar 

  • Meeusen J et al (2012) Reaction of metal-binding ligands with the zinc proteome: zinc sensors and N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine. Inorg Chem 51:3625–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan MT et al (2019) Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells. Proc Natl Acad Sci U S A 116:12167–12172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujumdar RB et al (1993) Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters. Bioconjug Chem 4:105–111

    Article  CAS  PubMed  Google Scholar 

  • Mütze J et al (2012) Excitation spectra and brightness optimization of two-photon excited probes. Biophys J 102:934–944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nasir M et al (1999) The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex. J Biol Inorg Chem 4:775–783

    Article  CAS  PubMed  Google Scholar 

  • Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. Acc Chem Res 42:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowakowski A et al (2015) Chemical-biological properties of zinc sensors TSQ and Zinquin: formation of sensor-Zn-protein adducts versus Zn(sensor)2 complexes. Inorg Chem 54:11637–11647

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA et al (2001) Derivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for zinc sensors in biological systems. J Am Chem Soc 123:5160–5161

    Article  CAS  PubMed  Google Scholar 

  • Qin Y et al (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A 108:7351–7356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y et al (2013) Direct comparison of a genetically encoded sensor and small molecule indicator: implications for quantification of cytosolic Zn2+. ACS Chem Biol 8:2366–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford RJ et al (2013) Peptide-based targeting of fluorescent zinc sensors to the plasma membrane of live cells (vol 4, pg 3080, 2013). Chem Sci 4:4532–4532

    Article  CAS  Google Scholar 

  • Ricard C et al (2018) Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells. Brain Struct Funct 223:3011–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royzen M et al (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127:1612–1613

    Article  CAS  PubMed  Google Scholar 

  • Rumi M et al (2000) Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis (styryl) benzene derivatives. J Am Chem Soc 122:9500–9510

    Article  CAS  Google Scholar 

  • Sarkar AR et al (2014) Two-photon fluorescent probes for metal ions in live tissues. Inorg Chem 53:1794–1803

    Article  CAS  PubMed  Google Scholar 

  • Schießl IM, Castrop H (2016) Deep insights: intravital imaging with two-photon microscopy. Pflugers Arch 468:1505–1516

    Article  PubMed  CAS  Google Scholar 

  • Sensi SL et al (2003) A new mitochondrial fluorescent zinc sensor. Cell Calcium 34:281–284

    Article  CAS  PubMed  Google Scholar 

  • Sfrazzetto GT et al (2016) Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 311:125–167

    Article  CAS  Google Scholar 

  • Singh H et al (2015) A Golgi-localized two-photon probe for imaging zinc ions. Chem Commun 51:12099–12102

    Article  CAS  Google Scholar 

  • Sjoback R et al (1995) Absorption and fluorescence properties of fluorescein. Spectrochim Acta A 51:L7–L21

    Article  Google Scholar 

  • Staszewska A et al (2013) Ternary complex formation and competition quench fluorescence of ZnAF family zinc sensors. Metallomics 5:1483–1490

    Article  CAS  PubMed  Google Scholar 

  • Sumalekshmy S, Fahrni CJ (2011) Metal-ion-responsive fluorescent probes for two-photon excitation microscopy. Chem Mater:823–830

    Google Scholar 

  • Sumalekshmy S et al (2007) Design of emission ratiometric metal-ion sensors with enhanced two-photon cross section and brightness. J Am Chem Soc 129:11888–11889

    Article  CAS  PubMed  Google Scholar 

  • Taki M et al (2004) Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. J Am Chem Soc 126:712–713

    Article  CAS  PubMed  Google Scholar 

  • Thompson K et al (2012) Predicting and avoiding subcellular compartmentalization artifacts arising from acetoxymethyl ester calcium imaging probes. The case of fluo-3 AM and a general account of the phenomenon including a problem avoidance chart. Biotech Histochem 87:468–483

    Article  CAS  PubMed  Google Scholar 

  • Tomat E et al (2008) Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc 130:15776–15777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tragardh J et al (2015) Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser. J Microsc 259:210–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    Article  CAS  PubMed  Google Scholar 

  • Tsien RY (1988) Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends Neurosci 11:419–424

    Article  CAS  PubMed  Google Scholar 

  • Tsien R, Pozzan T (1989) Measurement of cytosolic free Ca2+ with Quin2. Methods Enzymol 172:230–262

    Article  CAS  PubMed  Google Scholar 

  • Umezawa K et al (2009) Bright, color-tunable fluorescent dyes in the Vis/NIR region: establishment of new “tailor-made” multicolor fluorophores based on borondipyrromethene. Chemistry 15:1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Vergnano AM et al (2014) Zinc dynamics and action at excitatory synapses. Neuron 82:1101–1114

    Article  CAS  PubMed  Google Scholar 

  • Vinkenborg JL et al (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Meth 6:737–740

    Article  CAS  Google Scholar 

  • Walkup GK et al (2000) A new cell-permeable fluorescent probe for Zn2+. J Am Chem Soc 122:5644–5645

    Article  CAS  Google Scholar 

  • Wang C, Yeh AT (2012) Two-photon excited fluorescence enhancement with broadband versus tunable femtosecond laser pulse excitation. J Biomed Opt 17: 025003

    Article  PubMed  CAS  Google Scholar 

  • Wokosin DL et al (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wommer S et al (2002) Substrate-activated zinc binding of metallo-beta -lactamases: physiological importance of mononuclear enzymes. J Biol Chem 277:24142–24147

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13:481–491

    Article  CAS  Google Scholar 

  • Xu ZC et al (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Belfield KD (2012) Two-photon fluorescent probes for bioimaging. Eur J Org Chem:3199–3217

    Article  CAS  Google Scholar 

  • Zalewski PD et al (1993) Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent-probe for Zn(II). Biochem J 296:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Foundation under grant CHE-1306943 and the National Institutes of Health under the award number R01GM067169 is gratefully acknowledged. We also thank Dr. M. Thomas Morgan for a critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Fahrni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J., Fahrni, C.J. (2019). In Situ Imaging of Zinc with Synthetic Fluorescent Probes. In: Fukada, T., Kambe, T. (eds) Zinc Signaling. Springer, Singapore. https://doi.org/10.1007/978-981-15-0557-7_18

Download citation

Publish with us

Policies and ethics