Skip to main content

Using Morpholinos to Probe Gene Networks in Sea Urchin

  • Protocol
  • First Online:
Morpholino Oligomers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1565))

Abstract

The control processes that underlie the progression of development can be summarized in maps of gene regulatory networks (GRNs). A critical step in their assembly is the systematic perturbation of network candidates. In sea urchins the most important method for interfering with expression in a gene-specific way is application of morpholino antisense oligonucleotides (MOs). MOs act by binding to their sequence complement in transcripts resulting in a block in translation or a change in splicing and thus result in a loss of function. Despite the tremendous success of this technology, recent comparisons to mutants generated by genome editing have led to renewed criticism and challenged its reliability. As with all methods based on sequence recognition, MOs are prone to off-target binding that may result in phenotypes that are erroneously ascribed to the loss of the intended target. However, the slow progression of development in sea urchins has enabled extremely detailed studies of gene activity in the embryo. This wealth of knowledge paired with the simplicity of the sea urchin embryo enables careful analysis of MO phenotypes through a variety of methods that do not rely on terminal phenotypes. This article summarizes the use of MOs in probing GRNs and the steps that should be taken to assure their specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson EH, Peter I (2015) Genomic control process. Academic, San Diego, CA

    Google Scholar 

  2. Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952. doi:10.1126/science.1133609

    Article  Google Scholar 

  3. Davidson EH (2015) Genomics, “discovery science,” systems biology, and causal explanation: what really works? Perspect Biol Med 58:165–181. doi:10.1353/pbm.2015.0025

    Article  PubMed  Google Scholar 

  4. Howard EW, Newman LA, Oleksyn DW et al (2001) SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos. Development 128:365–375

    CAS  PubMed  Google Scholar 

  5. Davidson EH, Rast JP, Oliveri P et al (2002) A genomic regulatory network for development. Science 295:1669–1678. doi:10.1126/science.1069883

    Article  CAS  PubMed  Google Scholar 

  6. Materna SC, Oliveri P (2008) A protocol for unraveling gene regulatory networks. Nat Protoc 3:1876–1887. doi:10.1038/nprot.2008.187

    Article  CAS  PubMed  Google Scholar 

  7. Cui M, Siriwon N, Li E et al (2014) Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo. Proc Natl Acad Sci U S A 111:E5029–E5038. doi:10.1073/pnas.1419141111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peter IS, Faure E, Davidson EH (2012) Predictive computation of genomic logic processing functions in embryonic development. Proc Natl Acad Sci U S A 109:16434–16442. doi:10.1073/pnas.1207852109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kok FO, Shin M, Ni C-W et al (2015) Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32(1):97. doi:10.1016/j.devcel.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  10. Bedell VM, Westcot SE, Ekker SC (2011) Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics 10:181–188. doi:10.1093/bfgp/elr021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eisen JS, Smith JC (2008) Controlling morpholino experiments: don't stop making antisense. Development 135:1735–1743. doi:10.1242/dev.001115

    Article  CAS  PubMed  Google Scholar 

  12. Röttinger E, Saudemont A, Duboc V et al (2008) FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development 135:353–365. doi:10.1242/dev.014282

    Article  PubMed  Google Scholar 

  13. Materna SC, Ransick A, Li E, Davidson EH (2013) Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 375:92–104. doi:10.1016/j.ydbio.2012.11.033

    Article  CAS  PubMed  Google Scholar 

  14. Haillot E, Molina MD, Lapraz F, Lepage T (2015) The maternal Maverick/GDF15-like TGF-β ligand panda directs dorsal-ventral axis formation by restricting nodal expression in the sea urchin embryo. PLoS Biol 13:e1002247. doi:10.1371/journal.pbio.1002247

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ransick A, Davidson EH (2012) Cis-regulatory logic driving glial cells missing: Self-sustaining circuitry in later embryogenesis. Dev Biol:1–9. doi:10.1016/j.ydbio.2012.02.003

  16. Andrikou C, Pai C-Y, Su Y-H, Arnone MI (2015) Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm. eLife 4. doi:10.7554/eLife.07343

  17. Ketting RF (2011) The many faces of RNAi. Dev Cell 20:148–161. doi:10.1016/j.devcel.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  18. Song JL, Stoeckius M, Maaskola J et al (2012) Select microRNAs are essential for early development in the sea urchin. Dev Biol 362:104–113. doi:10.1016/j.ydbio.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  19. Duboc V, Röttinger E, Besnardeau L, Lepage T (2004) Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6:397–410

    Article  CAS  PubMed  Google Scholar 

  20. Su Y-H (2014) Telling left from right: left-right asymmetric controls in sea urchins. Genesis 52:269–278. doi:10.1002/dvg.22739

    Article  PubMed  Google Scholar 

  21. Luo YJ, Su YH (2012) Opposing nodal and BMP signals regulate left–right asymmetry in the sea urchin larva. PLoS Biol 10(10):e1001402. doi:10.1371/journal.pbio.1001402.g006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heyland A, Hodin J, Bishop C (2014) Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae. PLoS One 9:e113866. doi:10.1371/journal.pone.0113866

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morcos PA, Li Y, Jiang S (2008) Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechnology 45:613–618

    Article  CAS  Google Scholar 

  24. Payumo AY, Walker WJ, McQuade LE et al (2015) Optochemical dissection of T-box gene-dependent medial floor plate development. ACS Chem Biol 10:1466–1475. doi:10.1021/cb5010178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cameron RA, Samanta M, Yuan A et al (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37:D750–D754. doi:10.1093/nar/gkn887

    Article  CAS  PubMed  Google Scholar 

  26. Coffman JA, Dickey-Sims C, Haug JS et al (2004) Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene. BMC Biol 2:6. doi:10.1186/1741-7007-2-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coffman JA, Kirchhamer CV, Harrington MG, Davidson EH (1996) SpRunt-1, a new member of the runt domain family of transcription factors, is a positive regulator of the aboral ectoderm-specific CyIIIA gene in sea urchin embryos. Dev Biol 174:43–54. doi:10.1006/dbio.1996.0050

    Article  CAS  PubMed  Google Scholar 

  28. Robu ME, Larson JD, Nasevicius A et al (2007) p53 activation by knockdown technologies. PLoS Genet 3:e78. doi:10.1371/journal.pgen.0030078

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shipp LE, Hill RZ, Moy GW et al (2015) ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos. Development 142:3537–3548. doi:10.1242/dev.126144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sherwood DR, McClay DR (2001) LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo. Development 128:2221–2232

    CAS  PubMed  Google Scholar 

  31. Materna SC, Davidson EH (2012) A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364:77–87. doi:10.1016/j.ydbio.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126:1703–1713

    CAS  PubMed  Google Scholar 

  33. Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129:1945–1955

    CAS  PubMed  Google Scholar 

  34. Angerer LM, Angerer RC (2004) Disruption of gene function using antisense morpholinos. Methods Cell Biol 74:699–711

    Article  CAS  PubMed  Google Scholar 

  35. Solek CM, Oliveri P, Loza-Coll M et al (2013) An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Dev Biol 382:280–292. doi:10.1016/j.ydbio.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  36. Prelich G (2012) Gene overexpression: uses, mechanisms, and interpretation. Genetics 190:841–854. doi:10.1534/genetics.111.136911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davidson EH (2010) Emerging properties of animal gene regulatory networks. Nature 468:911–920. doi:10.1038/nature09645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Materna SC, Nam J, Davidson EH (2010) High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 10:177–184. doi:10.1016/j.gep.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geiss G, Bumgarner R, Birditt B et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325. doi:10.1038/nbt1385

    Article  CAS  PubMed  Google Scholar 

  40. Tu Q, Cameron RA, Davidson EH (2013) Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev Biol:1–8. doi:10.1016/j.ydbio.2013.11.019

  41. Cheers MS, Ettensohn CA (2004) Rapid microinjection of fertilized eggs. Methods Cell Biol 74:287–310

    Article  PubMed  Google Scholar 

  42. Stepicheva NA, Song JL (2014) High throughput microinjections of sea urchin zygotes. J Vis Exp:e50841. doi:10.3791/50841

  43. van Impel A, Zhao Z, Hermkens DMA et al (2014) Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 141:1228–1238. doi:10.1242/dev.105031

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nasevicius A, Ekker SC (2000) Effective targeted gene “knockdown” in zebrafish. Nat Genet 26:216–220. doi:10.1038/79951

    Article  CAS  PubMed  Google Scholar 

  45. Schulte-Merker S, Stainier DYR (2014) Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology. Development 141:3103–3104. doi:10.1242/dev.112003

    Article  CAS  PubMed  Google Scholar 

  46. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355. doi:10.1038/nbt.2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin C-Y, Su Y-H (2016) Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol 409:420–428. doi:10.1016/j.ydbio.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  48. Nam J, Su Y-H, Lee PY et al (2007) Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network. Dev Biol 306:860–869. doi:10.1016/j.ydbio.2007.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi:10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rossi A, Kontarakis Z, Gerri C et al (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–233. doi:10.1038/nature14580

    Article  CAS  PubMed  Google Scholar 

  51. Mandegar MA, Huebsch N, Frolov EB et al (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18:541–553. doi:10.1016/j.stem.2016.01.022

    Article  CAS  PubMed  Google Scholar 

  52. Howard-Ashby M, Materna SC, Brown CT et al (2006) High regulatory gene use in sea urchin embryogenesis: Implications for bilaterian development and evolution. Dev Biol 300:27–34. doi:10.1016/j.ydbio.2006.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to the many members of the sea urchin community who shared their experiences. Many thanks to Drs. Jonathan Rast, Eric Erkenbrack, Lauren Shipp, and Stephanie Woo for detailed comments on the manuscript. In memory of Eric Davidson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan C. Materna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Materna, S.C. (2017). Using Morpholinos to Probe Gene Networks in Sea Urchin. In: Moulton, H., Moulton, J. (eds) Morpholino Oligomers. Methods in Molecular Biology, vol 1565. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6817-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6817-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6815-2

  • Online ISBN: 978-1-4939-6817-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics