Skip to main content

On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics

  • Protocol
  • First Online:
Microchip Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1547))

Abstract

Magnetic particles have become popular in recent years for immunoassays due to their high surface-to-volume ratio and the ease of their manipulation. However, such assays also require multiple reaction and washing steps that are both time-consuming and manually laborious. Here, we describe a setup and methodology for performing rapid immunoassays on magnetic particles in continuous flow via their deflection through multiple laminar flow streams of reagents and washing solutions. In particular, we focus on the use of the microfluidic platform for a C-reactive protein (CRP) sandwich immunoassay in less than 60 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarn MD, Pamme N (2013) Microfluidics. In: Reedijk J (ed) Elsevier reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Waltham, MA. doi:10.1016/B978-0-12-409547-2.05351-8

    Google Scholar 

  2. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113(4):2550–2583

    Article  CAS  Google Scholar 

  3. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    Article  CAS  Google Scholar 

  4. Pamme N (2012) On-chip bioanalysis with magnetic particles. Curr Opin Chem Biol 16(3–4):436–443

    Article  CAS  Google Scholar 

  5. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40

    CAS  Google Scholar 

  6. Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  CAS  Google Scholar 

  7. Tarn MD, Lopez-Martinez MJ, Pamme N (2014) On-chip processing of particles and cells via multilaminar flow streams. Anal Bioanal Chem 406(1):139–161

    Article  CAS  Google Scholar 

  8. Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8(9):1448–1453

    Article  CAS  Google Scholar 

  9. Kantak C, Beyer S, Yobas L, Bansal T, Trau D (2011) A ‘microfluidic pinball’ for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules. Lab Chip 11(6):1030–1035

    Article  CAS  Google Scholar 

  10. Sochol RD, Li S, Lee LP, Lin L (2012) Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing. Lab Chip 12(20):4168–4177

    Article  CAS  Google Scholar 

  11. Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7(7):581–587

    Article  CAS  Google Scholar 

  12. Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided fluidic self-assembly of microtrains using railed microfluidics. Paper presented at the FNANO08—5th Annual Conference on Foundations of Nanoscience, Snowbird Cliff Lodge, Snowbird, Utah, USA, 22–25 April 2008.

    Google Scholar 

  13. Seger U, Gawad S, Johann R, Bertsch A, Renaud P (2004) Cell immersion and cell dipping in microfluidic devices. Lab Chip 4(2):148–151

    Article  CAS  Google Scholar 

  14. Augustsson P, Åberg L, Swärd-Nilsson A-M, Laurell T (2009) Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Microchim Acta 164(3–4):269–277

    Article  CAS  Google Scholar 

  15. Chiang Y-Y, West J (2013) Ultrafast cell switching for recording cell surface transitions: new insights into epidermal growth factor receptor signalling. Lab Chip 13(6):1031–1034

    Article  CAS  Google Scholar 

  16. Yang S, Ji B, Ündar A, Zahn JD (2006) Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures. ASAIO J 52(6):698–704

    Article  CAS  Google Scholar 

  17. Toyama K, Yamada M, Seki M (2012) Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange. Biomed Microdevices 14(4):751–757

    Article  CAS  Google Scholar 

  18. Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystrom T, Hanstorp D (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7(1):71–76

    Article  CAS  Google Scholar 

  19. Kim T, Cheng L-J, Kao M-T, Hasselbrink EF, Guo L, Meyhofer E (2009) Biomolecular motor-driven molecular sorter. Lab Chip 9(9):1282–1285

    Article  CAS  Google Scholar 

  20. Tan AP, Dudani JS, Arshi A, Lee RJ, Tse HTK, Gossett DR, Di Carlo D (2014) Continuous-flow cytomorphological staining and analysis. Lab Chip 14(3):522–531

    Article  CAS  Google Scholar 

  21. Li S, Ding X, Mao Z, Chen Y, Nama N, Guo F, Li P, Wang L, Cameron CE, Huang TJ (2015) Standing surface acoustic wave (SSAW)-based cell washing. Lab Chip 15(1):331–338

    Article  Google Scholar 

  22. Peyman SA, Iles A, Pamme N (2008) Rapid on-chip multi-step (bio)chemical procedures in continuous flow—manoeuvring particles through co-laminar reagent streams. Chem Commun 10:1220–1222

    Article  Google Scholar 

  23. Peyman SA, Patel H, Belli N, Iles A, Pamme N (2009) A microfluidic system for performing fast, sequential biochemical procedures on the surface of mobile magnetic particles in continuous flow. Magnetohydrodynamics 45(3):361–370

    Google Scholar 

  24. Peyman SA, Iles A, Pamme N (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9(21):3110–3117

    Article  CAS  Google Scholar 

  25. Phurimsak C, Tarn MD, Peyman SA, Greenman J, Pamme N (2014) On-chip determination of C-reactive protein using magnetic particles in continuous flow. Anal Chem 86(21):10552–10559

    Article  CAS  Google Scholar 

  26. Vojtíšek M, Iles A, Pamme N (2010) Rapid, multistep on-chip DNA hybridisation in continuous flow on magnetic particles. Biosens Bioelectron 25(9):2172–2176

    Article  Google Scholar 

  27. Tarn MD, Fakhrullin RF, Paunov VN, Pamme N (2013) Microfluidic device for the rapid coating of magnetic cells with polyelectrolytes. Mater Lett 95:182–185

    Article  CAS  Google Scholar 

  28. Sasso LA, Undar A, Zahn JD (2010) Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay. Microfluid Nanofluid 9(2–3):253–265

    Article  CAS  Google Scholar 

  29. Sasso L, Johnston I, Zheng M, Gupte R, Ündar A, Zahn J (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612

    Article  CAS  Google Scholar 

  30. Sasso LA, Aran K, Guan Y, Ündar A, Zahn JD (2013) Continuous monitoring of inflammation biomarkers during simulated cardiopulmonary bypass using a microfluidic immunoassay device—A pilot study. Artif Organs 37(1):E9–E17

    Article  Google Scholar 

  31. Zhou Y, Wang Y, Lin Q (2010) A microfluidic device for continuous-flow magnetically controlled capture and isolation of microparticles. J Microelectromech Syst 19(4):743–751

    Article  CAS  Google Scholar 

  32. Lee SHS, Hatton TA, Khan SA (2011) Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates. Microfluid Nanofluid 11(4):429–438

    Article  CAS  Google Scholar 

  33. Gao Y, Lam AWY, Chan WCW (2013) Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device. ACS Appl Mater Interfaces 5(8):2853–2860

    Article  CAS  Google Scholar 

  34. Ganguly R, Hahn T, Hardt S (2010) Magnetophoretic mixing for in situ immunochemical binding on magnetic beads in a microfluidic channel. Microfluid Nanofluid 8(6):739–753

    Article  CAS  Google Scholar 

  35. Karle M, Miwa J, Czilwik G, Auwaerter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23):3284–3290

    Article  CAS  Google Scholar 

  36. Karle M, Woehrle J, Miwa J, Paust N, Roth G, Zengerle R, von Stetten F (2011) Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10(4):935–939

    Article  CAS  Google Scholar 

  37. Tsai SSH, Wexler JS, Wan J, Stone HA (2011) Conformal coating of particles in microchannels by magnetic forcing. Appl Phys Lett 99(15):153509

    Article  Google Scholar 

  38. Tsai SSH, Wexler JS, Wan J, Stone HA (2013) Microfluidic ultralow interfacial tensiometry with magnetic particles. Lab Chip 13(1):119–125

    Article  CAS  Google Scholar 

  39. Moon B-U, Hakimi N, Hwang DK, Tsai SSH (2014) Microfluidic conformal coating of non-spherical magnetic particles. Biomicrofluidics 8(5):052103

    Article  Google Scholar 

  40. McCreedy T (2000) Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems. TrAC, Trends Anal Chem 19(6):396–401

    Article  CAS  Google Scholar 

  41. Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321(24):4115–4122

    Article  CAS  Google Scholar 

  42. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Pamme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tarn, M.D., Pamme, N. (2017). On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In: Taly, V., Viovy, JL., Descroix, S. (eds) Microchip Diagnostics. Methods in Molecular Biology, vol 1547. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6734-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6734-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6732-2

  • Online ISBN: 978-1-4939-6734-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics