Skip to main content

Detection of Transcriptionally Active Mycotoxin Gene Clusters: DNA Microarray

  • Protocol
  • First Online:
Mycotoxigenic Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1542))

Abstract

Various bioanalytical tools including DNA microarrays are frequently used to map global transcriptional changes in mycotoxin producer filamentous fungi. This effective hybridization-based transcriptomics technology helps researchers to identify genes of secondary metabolite gene clusters and record concomitant gene expression changes in these clusters initiated by versatile environmental conditions and/or gene deletions. Such transcriptional data are of great value when future mycotoxin control technologies are considered and elaborated. Giving the readers insights into RNA extraction and DNA microarray hybridization steps routinely used in our laboratories and also into the normalization and evaluation of primary gene expression data, we would like to contribute to the interlaboratory standardization of DNA microarray based transcriptomics studies being carried out in many laboratories worldwide in this important field of fungal biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breakspear A, Momany M (2007) The first fifty microarray studies in filamentous fungi. Microbiology 153:7–15

    Article  CAS  PubMed  Google Scholar 

  2. Emri T, Szarvas V, Orosz E et al (2015) Core oxidative stress response in Aspergillus nidulans. BMC Genomics 16:478–496

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aguilar-Pontes MV, de Vries RP, Zhou M (2014) (Post-)genomics approaches in fungal research. Brief Funct Genomics 13:424–439

    Article  PubMed  Google Scholar 

  4. Price MS, Conners SB, Tachdjian S et al (2005) Aflatoxin conducive and non-conducive growth conditions reveal new gene associations with aflatoxin production. Fungal Genet Biol 42:506–518

    Article  CAS  PubMed  Google Scholar 

  5. Price MS, Yu J, Nierman WC et al (2006) The aflatoxin pathway regulator AflR induces gene transcription inside and outside of the aflatoxin biosynthetic cluster. FEMS Microbiol Lett 255:275–279

    Article  CAS  PubMed  Google Scholar 

  6. Bok JW, Hoffmeister D, Maggio-Hall LA et al (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37

    Article  CAS  PubMed  Google Scholar 

  7. Pirttilä AM, McIntyre LM, Payne GA et al (2004) Expression profile analysis of wild-type and fcc1 mutant strains of Fusarium verticillioides during fumonisin biosynthesis. Fungal Genet Biol 41:647–656

    Article  PubMed  Google Scholar 

  8. Lee S, Son H, Lee J et al (2011) A putative ABC transporter gene, ZRA1, is required for zearalenone production in Gibberella zeae. Curr Genet 57:343–351

    Article  CAS  PubMed  Google Scholar 

  9. Brown DW, Butchko RA, Busman M et al (2012) Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532

    Article  CAS  PubMed  Google Scholar 

  10. Wiemann P, Sieber CM, von Bargen KW et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cary JW, OBrian GR, Nielsen DM et al (2007) Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics. Appl Microbiol Biotechnol 76:1107–1118

    Article  CAS  PubMed  Google Scholar 

  12. Perrin RM, Fedorova ND, Bok JW et al (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3:e50

    Article  PubMed  PubMed Central  Google Scholar 

  13. Seong KY, Pasquali M, Zhou X et al (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol Microbiol 72:354–367

    Article  CAS  PubMed  Google Scholar 

  14. Wiemann P, Brown DW, Kleigrewe K et al (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee J, Myong K, Kim JE et al (2012) FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. Microbiology 158:1723–1733

    Article  CAS  PubMed  Google Scholar 

  16. Studt L, Schmidt FJ, Jahn L et al (2013) Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl Environ Microbiol 79:7719–7734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown DW, Busman M, Proctor RH (2014) Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant Microbe Interact 27:809–823

    Article  CAS  PubMed  Google Scholar 

  18. OBrian GR, Fakhoury AM, Payne GA (2003) Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet Biol 39:118–127

    Article  CAS  PubMed  Google Scholar 

  19. Pócsi I, Miskei M, Karányi Z et al (2005) Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures-linking genome-wide transcriptional changes to cellular physiology. BMC Genomics 6:182

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wilkinson JR, Yu J, Bland JM et al (2007) Amino acid supplementation reveals differential regulation of aflatoxin biosynthesis in Aspergillus flavus NRRL 3357 and Aspergillus parasiticus SRRC 143. Appl Microbiol Biotechnol 74:1308–1319

    Article  CAS  PubMed  Google Scholar 

  21. Wilkinson JR, Yu J, Abbas HK et al (2007) Aflatoxin formation and gene expression in response to carbon source media shift in Aspergillus parasiticus. Food Addit Contam 24:1051–1060

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson JR, Kale SP, Bhatnagar D et al (2011) Expression profiling of non-aflatoxigenic Aspergillus parasiticus mutants obtained by 5-azacytosine treatment or serial mycelial transfer. Toxins (Basel) 3:932–948

    Article  CAS  Google Scholar 

  23. Yu J, Ronning CM, Wilkinson JR et al (2007) Gene profiling for studying the mechanism of aflatoxin biosynthesis in Aspergillus flavus and A. parasiticus. Food Addit Contam 24:1035–1042

    Article  CAS  PubMed  Google Scholar 

  24. Kim JH, Yu J, Mahoney N et al (2008) Elucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis. Int J Food Microbiol 122:49–60

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt-Heydt M, Magan N, Geisen R (2008) Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol Lett 284:142–149

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt-Heydt M, Abdel-Hadi A, Magan N et al (2009) Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. Int J Food Microbiol 135:231–237

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt-Heydt M, Parra R, Geisen R et al (2011) Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species. J R Soc Interface 8:117–126

    Article  CAS  PubMed  Google Scholar 

  28. Schroeckh V, Scherlach K, Nützmann HW et al (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Medina A, Schmidt-Heydt M, Cárdenas-Chávez DL et al (2013) Integrating toxin gene expression, growth and fumonisin B1 and B2 production by a strain of Fusarium verticillioides under different environmental factors. J R Soc Interface 10:20130320

    Article  PubMed  PubMed Central  Google Scholar 

  30. Edlayne G, Simone A, Felicio JD (2009) Chemical and biological approaches for mycotoxin control: a review. Recent Pat Food Nutr Agric 1:155–161

    Article  CAS  PubMed  Google Scholar 

  31. Reverberi M, Ricelli A, Zjalic S et al (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87:899–911

    Article  CAS  PubMed  Google Scholar 

  32. Atanda SA, Aina JA, Agoda SA et al (2012) Mycotoxin management in agriculture: a review. J Anim Sci Adv 2:250–260

    Google Scholar 

  33. de Medeiros FHV, Martins SJ, Zucchi TD et al (2012) Biological control of mycotoxin-producing molds. Ciênc Agrotec Lavras 36:483–497

    Article  Google Scholar 

  34. Tsitsigiannis DI, Dimakopoulou M, Antoniou PP et al (2012) Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol Mediterr 51:158–174

    CAS  Google Scholar 

  35. Marroquín-Cardona AG, Johnson NM, Phillips TD et al (2014) Mycotoxins in a changing global environment--a review. Food Chem Toxicol 69:220–230

    Article  PubMed  Google Scholar 

  36. Oliveira PM, Zannini E, Arendt EK (2014) Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiol 37:78–95

    Article  CAS  PubMed  Google Scholar 

  37. Pfliegler WP, Pusztahelyi T, Pócsi I (2015) Mycotoxins - prevention and decontamination by yeasts. J Basic Microbiol 55(7):805–818. doi:10.1002/jobm.201400833

    Article  CAS  PubMed  Google Scholar 

  38. von Döhren H (2009) A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet Biol 46:S45–S52

    Article  Google Scholar 

  39. Nielsen ML, Nielsen JB, Rank C et al (2011) A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett 321:157–166

    Article  CAS  PubMed  Google Scholar 

  40. Andersen MR, Nielsen JB, Klitgaard A et al (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci U S A 110:E99–E107

    Article  CAS  PubMed  Google Scholar 

  41. Inglis DO, Binkley J, Skrzypek MS et al (2013) Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol 13:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sieber CM, Lee W, Wong P et al (2014) The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One 9:e110311

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hansen FT, Gardiner DM, Lysøe E et al (2015) An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium. Fungal Genet Biol 75C:20–29

    Article  Google Scholar 

  44. Chiang YM, Szewczyk E, Nayak T et al (2008) Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem Biol 15:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chiang YM, Szewczyk E, Davidson AD et al (2010) Characterization of the Aspergillus nidulans monodictyphenone gene cluster. Appl Environ Microbiol 76:2067–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ahuja M, Chiang YM, Chang SL et al (2012) Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans. J Am Chem Soc 134:8212–8221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giles SS, Soukup AA, Lauer C et al (2011) Cryptic Aspergillus nidulans antimicrobials. Appl Environ Microbiol 77:3669–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yaegashi J, Oakley BR, Wang CCC (2014) Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. J Ind Microbiol Biotechnol 41:433–442

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Wang W, Du X et al (2010) An improved RNA isolation method for filamentous fungus Blakeslea trispora rich in polysaccharides. Appl Biochem Biotechnol 160:322–327

    Article  CAS  PubMed  Google Scholar 

  50. Sallau AB, Henriquez F, Nok AJ et al (2013) Aspergillus niger - specific ribonucleic acid extraction method. J Yeast Fungal Res 4:58–62

    CAS  Google Scholar 

  51. Schumann U, Smith NA, Wang MB (2013) A fast and efficient method for preparation of high-quality RNA from fungal mycelia. BMC Res Notes 6:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  53. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–534, 536–537

    Google Scholar 

  54. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  55. Hayes A, Zhang N, Wu J et al (2002) Hybridization array technology coupled with chemostat culture: tools to interrogate gene expression in Saccharomyces cerevisiae. Methods 26:281–290

    Article  CAS  PubMed  Google Scholar 

  56. Ritchie ME, Silver J, Oshlack A et al (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23:2700–2707

    Article  CAS  PubMed  Google Scholar 

  57. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S et al (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  58. Bolstad BM, Irizarry RA, Astrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  59. Szilágyi M, Miskei M, Karányi Z et al (2013) Transcriptome changes initiated by carbon starvation in Aspergillus nidulans. Microbiology 159:176–190

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA K100464, K112181) and by the SROP-4.2.2.B-15/1/KONV-2015-0001 project. The project has been supported by the European Union, cofinanced by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Pócsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Emri, T., Zalka, A., Pócsi, I. (2017). Detection of Transcriptionally Active Mycotoxin Gene Clusters: DNA Microarray. In: Moretti, A., Susca, A. (eds) Mycotoxigenic Fungi. Methods in Molecular Biology, vol 1542. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6707-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6707-0_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6705-6

  • Online ISBN: 978-1-4939-6707-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics