Skip to main content

Reporter Gene-Based Screening for TPP Riboswitch Activators

  • Protocol
  • First Online:
Antibiotics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1520))

Abstract

With the rise of multidrug resistant bacteria and a growing number of nosocomial infections, there has been an increased interest in finding new antibacterial drugs and drug targets. Riboswitches represent attractive new antibacterial drug targets, because they not only inherently recognize a specific metabolite or ion with their RNA aptamer domain, but also often regulate essential metabolic pathways. Here, we describe a reporter gene-based screen to identify compounds that activate the thiamine pyrophosphate (TPP) riboswitch in bacteria. This assay can be easily adapted for different riboswitch classes and thus has the potential to target many essential metabolic pathways and a broad spectrum of bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43(6):867–879. doi:10.1016/j.molcel.2011.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24(12):1558–1564. doi:10.1038/nbt1268

    Article  CAS  PubMed  Google Scholar 

  3. Lünse CE, Schüller A, Mayer G (2014) The promise of riboswitches as potential antibacterial drug targets. Int J Med Microbiol 304(1):79–92. doi:10.1016/j.ijmm.2013.09.002

    Article  PubMed  Google Scholar 

  4. Blount KF, Wang JX, Lim J, Sudarsan N, Breaker RR (2007) Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 3(1):44–49. doi:10.1038/nchembio842

    Article  CAS  PubMed  Google Scholar 

  5. Lünse CE, Schmidt MS, Wittmann V, Mayer G (2011) Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol 6(7):675–678. doi:10.1021/cb200016d

    Article  PubMed  Google Scholar 

  6. Lünse CE, Scott FJ, Suckling CJ, Mayer G (2014) Novel TPP-riboswitch activators bypass metabolic enzyme dependency. Front Chem 2:53. doi:10.3389/fchem.2014.00053

    PubMed  PubMed Central  Google Scholar 

  7. Blount KF, Megyola C, Plummer M, Osterman D, O'Connell T, Aristoff P, Quinn C, Chrusciel RA, Poel TJ, Schostarez HJ, Stewart CA, Walker DP, Wuts PG, Breaker RR (2015) Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob Agents Chemother 59(9):5736–5746. doi:10.1128/AAC.01282-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim JN, Blount KF, Puskarz I, Lim J, Link KH, Breaker RR (2009) Design and antimicrobial action of purine analogues that bind Guanine riboswitches. ACS Chem Biol 4(11):915–927. doi:10.1021/cb900146k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mulhbacher J, Brouillette E, Allard M, Fortier LC, Malouin F, Lafontaine DA (2010) Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog 6(4), e1000865. doi:10.1371/journal.ppat.1000865

    Article  PubMed  PubMed Central  Google Scholar 

  10. Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, Murgolo N, Barbieri CM, Mann PA, Carr D, Xia E, Zuck P, Riley D, Painter RE, Walker SS, Sherborne B, de Jesus R, Pan W, Plotkin MA, Wu J, Rindgen D, Cummings J, Garlisi CG, Zhang R, Sheth PR, Gill CJ, Tang H, Roemer T (2015) Selective small-molecule inhibition of an RNA structural element. Nature 526(7575):672–677. doi:10.1038/nature15542

    Article  CAS  PubMed  Google Scholar 

  11. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419(6910):952–956. doi:10.1038/nature01145

    Article  CAS  PubMed  Google Scholar 

  12. Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  13. Nelson JW, Plummer MS, Blount KF, Ames TD, Breaker RR (2015) Small molecule fluoride toxicity agonists. Chem Biol 22(4):527–534. doi:10.1016/j.chembiol.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  14. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi:10.1038/msb4100050

    PubMed  Google Scholar 

  15. Simons RW, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53(1):85–96

    Article  CAS  PubMed  Google Scholar 

  16. Mayer G, Raddatz MS, Grunwald JD, Famulok M (2007) RNA ligands that distinguish metabolite-induced conformations in the TPP riboswitch. Angew Chem Int Ed Engl 46(4):557–560. doi:10.1002/anie.200603166

    Article  CAS  PubMed  Google Scholar 

  17. Tang X, Nakata Y, Li HO, Zhang M, Gao H, Fujita A, Sakatsume O, Ohta T, Yokoyama K (1994) The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Res 22(14):2857–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rentmeister A, Mayer G, Kuhn N, Famulok M (2007) Conformational changes in the expression domain of the Escherichia coli thiM riboswitch. Nucleic Acids Res 35(11):3713–3722. doi:10.1093/nar/gkm300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

G.M. was supported by a grant from the German Research Foundation (MA3442/1-2). C.E.L. was supported by the German Research Foundation grant LU1889-1 and NIH P01 grant GM022778 awarded to Professor Ronald R. Breaker, HHMI investigator, Yale University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina E. Lünse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lünse, C.E., Mayer, G. (2017). Reporter Gene-Based Screening for TPP Riboswitch Activators. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 1520. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6634-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6634-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6632-5

  • Online ISBN: 978-1-4939-6634-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics