Skip to main content

Information Visualization for Biological Data

  • Protocol
  • First Online:
Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1526))

Abstract

Visualization is a powerful method to present and explore a large amount of data. It is increasingly important in the life sciences and is used for analyzing different types of biological data, such as structural information, high-throughput data, and biochemical networks. This chapter gives a brief introduction to visualization methods for bioinformatics, presents two commonly used techniques in detail, and discusses a graphical standard for biological networks and cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsai CS (2003) Molecular graphics: visualization of biomolecules. In: Introduction to computational biochemistry. John Wiley & Sons, Inc., pp 53–71

    Google Scholar 

  2. Can T, Wang Y, Wang YF, Su J (2003) FPV: fast protein visualization using Java3D. Bioinformatics 19(8):913–922

    Article  CAS  PubMed  Google Scholar 

  3. Stivala A, Wybrow M, Wirth A, Whisstock JC, Stuckey PJ (2011) Automatic generation of protein structure cartoons with Pro-origami. Bioinformatics 27(23):3315–3316

    Article  CAS  PubMed  Google Scholar 

  4. Helt GA, Lewis S, Loraine AE, Rubin GM (1998) BioViews: Java-based tools for genomic data visualization. Genome Res 8(3):291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kerkhoven R, van Enckevort FHJ, Boekhorst J, Molenaar D, Siezen RJ (2004) Visualization for genomics: the microbial genome viewer. Bioinformatics 20(11):1812–1814

    Article  CAS  PubMed  Google Scholar 

  6. Naquin D, d’Aubenton-Carafa Y, Thermes C, Silvain M (2014) CIRCUS: a package for Circos display of structural genome variations from paired-end and mate-pair sequencing data. BMC Bioinformatics 15:198

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andrews DF (1972) Plots of high-dimensional data. Biometrics 29:125–136

    Article  Google Scholar 

  8. Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proc. Visualization, pp 361–370

    Google Scholar 

  9. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baehrecke EH, Dang N, Babaria K, Shneiderman B (2004) Visualization and analysis of microarray and gene ontology data with treemaps. BMC Bioinformatics 5(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hughes T, Hyun Y, Liberles D (2004) Visualising very large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinformatics 5(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rost U, Bornberg-Bauer E (2002) TreeWiz: interactive exploration of huge trees. Bioinformatics 18(1):109–114

    Article  CAS  PubMed  Google Scholar 

  13. Huson D, Richter D, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8(1):460

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schreiber F (2002) High quality visualization of biochemical pathways in BioPath. In Silico Biol 2(2):59–73

    CAS  PubMed  Google Scholar 

  15. Sirava M, Schäfer T, Eiglsperger M, Kaufmann M, Kohlbacher O, Bornberg-Bauer E, Lenhof HP (2002) BioMiner—modeling, analyzing, and visualizing biochemical pathways and networks. Bioinformatics 18(suppl 2):S219–S230

    Google Scholar 

  16. Kerren A, Schreiber F (2014) Network visualization for integrative bioinformatics. In: Hofestädt R, Chen M (eds) Approaches in Integrative Bioinformatics: towards the virtual cell. Springer, New York, pp 173–202

    Chapter  Google Scholar 

  17. Molw PDB Viewer 4.0

    Google Scholar 

  18. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Forster M, Pick A, Raitner M, Schreiber F, Brandenburg FJ (2002) The system architecture of the BioPath system. In Silico Biol 2(3):415–426

    CAS  PubMed  Google Scholar 

  20. Gehlenborg N, O'Donoghue SI, Baliga NS, Goesmann A, Hibbs MA et al (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68

    Article  CAS  PubMed  Google Scholar 

  21. Duggan D, Bittner B, Chen Y, Meltzer P, Trent J (1999) Expression profiling using cDNA microarrays. Nat Genet 21(Suppl 1):11–19

    Google Scholar 

  22. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl 1):526–532

    Article  CAS  PubMed  Google Scholar 

  23. Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646

    Article  CAS  PubMed  Google Scholar 

  24. R. http://www.r-project.org/

  25. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Genc B, Dogrusöz U (2003) A constrained, force-directed layout algorithm for biological pathways. In: Liotta G (ed) Proc. International Symposium on Graph Drawing (GD'03), vol 2912. Springer LNCS, Heidelberg, pp 314–319

    Google Scholar 

  27. Klukas C, Schreiber F, Schwöbbermeyer H (2006) Coordinated perspectives and enhanced force-directed layout for the analysis of network motifs. In: Misue K, Sugiyama K, Tanaka J (eds) Proc. Asia-Pacific symposium on information visualization (APVis'06), CRPIT 60, pp 39–48

    Google Scholar 

  28. Friedrich C, Schreiber F (2003) Visualization and navigation methods for typed protein-protein interaction networks. Appl Bioinformatics 2(3):19–24

    Google Scholar 

  29. Junker BH, Koschützki D, Schreiber F (2006) Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 7:219

    Article  PubMed  PubMed Central  Google Scholar 

  30. Le Novère N, Hucka M, Mi HY, Moodie S, Schreiber F, Sorokin A et al (2009) The systems biology graphical notation. Nat Biotechnol 27:735–741

    Article  PubMed  Google Scholar 

  31. Moodie S, Le Novère N, Sorokin A, Mi H, Schreiber F (2009) The Systems Biology Graphical Notation: process description language level 1. Nature Precedings 2009.3721

    Google Scholar 

  32. Le Novère N, Moodie S, Sorokin A, Schreiber F, Mi H (2009) Systems biology graphical notation: entity relationship language level 1. Nature Precedings 2009.3719

    Google Scholar 

  33. Huaiyu M, Schreiber F, Le Novère N, Moodie S, Sorokin A (2009) Systems biology graphical notation: activity flow language level 1. Nature Precedings 2009.3724

    Google Scholar 

  34. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42(1):D472–D477

    Article  CAS  PubMed  Google Scholar 

  35. Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41(1):D377–D386

    Article  CAS  PubMed  Google Scholar 

  36. Chelliah V, Laibe C, Le Novère N (2013) BioModels database: a repository of mathematical models of biological processes. Methods Mol Biol 1021:189–199

    Article  PubMed  Google Scholar 

  37. Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T et al (2013) Large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol 7:116

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schreiber F, Colmsee C, Czauderna T, Grafahrend-Belau E, Hartmann A, Junker A, Junker BH, Klapperstück M, Scholz U, Weise S (2012) MetaCrop 2.0: managing and exploring information about crop plant metabolism. Nucleic Acids Res 40(1):D1173–D1177

    Article  CAS  PubMed  Google Scholar 

  39. Junker A, Hartmann A, Schreiber F, Bäumlein H (2010) An engineer’s view on regulation of seed development. Trends Plant Sci 15(6):303–307

    Article  CAS  PubMed  Google Scholar 

  40. Czauderna T, Klukas C, Schreiber F (2010) Editing, validating, and translating of SBGN maps. Bioinformatics 26(18):2340–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bar-Joseph Z, Gifford DK, Jaakkola TS (2001) Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17(Suppl 1):S22–S29

    Article  PubMed  Google Scholar 

  42. Biedl T, Brejová B, Demaine ED, Hamel AM, Vinař T (2001) Optimal arrangement of leaves in the tree representing hierarchical clustering of gene expression data. Technical report 2001–14, Dept. of Computer Science, University of Waterloo

    Google Scholar 

  43. Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  44. Eades P (1984) A heuristic for graph drawing. Congr Numer 42:149–160

    Google Scholar 

  45. Fruchterman T, Reingold E (1991) Graph drawing by force-directed placement. Software Pract Exper 21:1129–1164

    Article  Google Scholar 

  46. Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31:7–15

    Article  Google Scholar 

  47. Sugiyama K, Misue K (1995) Graph drawing by magnetic spring model. J Vis Lang Comput 6(3):217–231

    Article  Google Scholar 

  48. Madadhain J, Fisher D, Smyth P, White S, Boey YB (2005) Analysis and visualization of network data using JUNG. J Stat Softw 10:1–35

    Google Scholar 

  49. Bachmaier C, Brandenburg FJ, Forster M, Holleis P, Raitner M (2005) Gravisto: graph visualization toolkit. In: Pach J (ed) Proc. International Symposium on Graph Drawing (GD'04), vol 3383. Springer LNCS, Heidelberg, pp 502–503

    Google Scholar 

  50. Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstück M, Czauderna T, Klukas C, Schreiber F (2012) VANTED v2: a framework for systems biology applications. BMC Syst Biol 6(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  51. Junker A, Sorokin A, Czauderna T, Schreiber F, Mazein A (2012) Wiring diagrams in biology: towards the standardized representation of biological information. Trends Biotechnol 30(11):555–557

    Article  CAS  PubMed  Google Scholar 

  52. Junker A, Rohn H, Czauderna T, Klukas C, Hartmann A, Schreiber F (2012) Creating interactive, web-based and data-enriched maps with the Systems Biology Graphical Notation. Nat Protoc 7:579–593

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Schreiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Czauderna, T., Schreiber, F. (2017). Information Visualization for Biological Data. In: Keith, J. (eds) Bioinformatics. Methods in Molecular Biology, vol 1526. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6613-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6613-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6611-0

  • Online ISBN: 978-1-4939-6613-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics