Skip to main content

Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1451))

Abstract

Targeting nucleases like zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system have revolutionized genome-editing possibilities in many model organisms. They allow the generation of loss-of-function alleles by the introduction of double-strand breaks at defined sites within genes, but also more sophisticated genome-editing approaches have become possible. These include the integration of donor plasmid DNA into the genome by homology-independent repair mechanisms after CRISPR/Cas9-mediated cleavage. Here we present a protocol outlining the most important steps to target a genomic site and to integrate a donor plasmid at this defined locus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Walker C, Streisinger G (1983) Induction of mutations by gamma-rays in pregonial germ cells of zebrafish embryos. Genetics 103:125–136

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chakrabarti S, Streisinger G, Singer F, Walker C (1983) Frequency of gamma-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, BRACHYDANIO RERIO. Genetics 103:109–123

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265:666–669

    Article  CAS  PubMed  Google Scholar 

  4. Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4:189–202

    Article  CAS  PubMed  Google Scholar 

  5. Solnica-Krezel L, Schier AF, Driever W (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136:1401–1420

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Amsterdam A, Hopkins N (1999) Retrovirus-mediated insertional mutagenesis in zebrafish. Methods Cell Biol 60:87–98

    Article  CAS  PubMed  Google Scholar 

  7. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  8. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  9. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97:11403–11408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawakami K (2004) Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol 77:201–222

    Article  CAS  PubMed  Google Scholar 

  11. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144

    Article  CAS  PubMed  Google Scholar 

  12. Balciunas D, Ekker SC (2005) Trapping fish genes with transposons. Zebrafish 1:335–341

    Article  PubMed  Google Scholar 

  13. Balciuniene J, Balciunas D (2013) Gene trapping using gal4 in zebrafish. J Vis Exp (79):e50113

    Google Scholar 

  14. Balciuniene J, Nagelberg D, Walsh KT, Camerota D, Georlette D, Biemar F, Bellipanni G, Balciunas D (2013) Efficient disruption of Zebrafish genes using a Gal4-containing gene trap. BMC Genomics 14:619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maddison LA, Li M, Chen W (2014) Conditional gene-trap mutagenesis in zebrafish. Methods Mol Biol 1101:393–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maddison LA, Lu J, Chen W (2011) Generating conditional mutations in zebrafish using gene-trap mutagenesis. Methods Cell Biol 104:1–22

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ni TT, Lu J, Zhu M, Maddison LA, Boyd KL, Huskey L, Ju B, Hesselson D, Zhong TP, Page-McCaw PS et al (2012) Conditional control of gene function by an invertible gene trap in zebrafish. Proc Natl Acad Sci U S A 109:15389–15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song G, Li Q, Long Y, Gu Q, Hackett PB, Cui Z (2012) Effective gene trapping mediated by Sleeping Beauty transposon. PLoS One 7:e44123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song G, Li Q, Long Y, Hackett PB, Cui Z (2012) Effective expression-independent gene trapping and mutagenesis mediated by Sleeping Beauty transposon. J Genet Genomics 39:503–520

    Article  CAS  PubMed  Google Scholar 

  20. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H (2007) Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4:323–326

    CAS  PubMed  Google Scholar 

  21. le Trinh A, Fraser SE (2013) Enhancer and gene traps for molecular imaging and genetic analysis in zebrafish. Develop Growth Differ 55:434–445

    Article  CAS  Google Scholar 

  22. Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5:62

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231:449–459

    Article  CAS  PubMed  Google Scholar 

  24. Choo BG, Kondrichin I, Parinov S, Emelyanov A, Go W, Toh WC, Korzh V (2006) Zebrafish transgenic Enhancer TRAP line database (ZETRAP). BMC Dev Biol 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kondrychyn I, Teh C, Garcia-Lecea M, Guan Y, Kang A, Korzh V (2011) Zebrafish enhancer TRAP transgenic line database ZETRAP 2.0. Zebrafish 8:181–182

    Article  CAS  PubMed  Google Scholar 

  26. Suster ML, Abe G, Schouw A, Kawakami K (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc 6:1998–2021

    Article  CAS  PubMed  Google Scholar 

  27. Bussmann J, Schulte-Merker S (2011) Rapid BAC selection for tol2-mediated transgenesis in zebrafish. Development 138:4327–4332

    Article  CAS  PubMed  Google Scholar 

  28. Suster ML, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10:477

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  Google Scholar 

  32. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR (2012) Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 40:8001–8010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8:e1002861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moore FE, Reyon D, Sander JD, Martinez SA, Blackburn JS, Khayter C, Ramirez CL, Joung JK, Langenau DM (2012) Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One 7:e37877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh J-RJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, Ha SJ, Kim CH et al (2014) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 24(1):125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A, Montague TG, Zimmerman S, Richter C, Schier AF (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:e98186

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu D, Wang Z, Xiao A, Zhang Y, Li W, Zu Y, Yao S, Lin S, Zhang B (2014) Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J Genet Genomics 41:43–46

    Article  PubMed  Google Scholar 

  45. Auer TO, Del Bene F (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69(2):142–150

    Article  CAS  PubMed  Google Scholar 

  46. Shin J, Chen J, Solnica-Krezel L (2014) Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 141:3807–3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q et al (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10:329–331

    Article  CAS  PubMed  Google Scholar 

  48. Irion U, Krauss J, Nusslein-Volhard C (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141:4827–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Auer TO, Duroure K, Concordet JP, Del Bene F (2014) CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nat Protoc 9:2823–2840

    Article  CAS  PubMed  Google Scholar 

  52. Rembold M, Lahiri K, Foulkes NS, Wittbrodt J (2006) Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 1:1133–1139

    Article  CAS  PubMed  Google Scholar 

  53. Westerfield M (ed) (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Orgeon Press, Oregon

    Google Scholar 

  54. Foley JE, Maeder ML, Pearlberg J, Joung JK, Peterson RT, Yeh JR (2009) Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4:1855–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh JR (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8:e68708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Naito Y, Hino K, Bono H, Ui-Tei K (2014) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123

    Article  PubMed  PubMed Central  Google Scholar 

  58. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594

    Article  CAS  PubMed  Google Scholar 

  59. Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc 2006

    Google Scholar 

  60. Di Donato V, Auer TO, Duroure K, Del Bene F (2013) Characterization of the calcium binding protein family in zebrafish. PLoS One 8:e53299

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abe G, Suster ML, Kawakami K (2011) Tol2-mediated transgenesis, gene trapping, enhancer trapping, and the Gal4-UAS system. Methods Cell Biol 104:23–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A special thanks to J. P. Concordet, K. Duroure, and A. De Cian for helping with the development and initial establishment of the homology-independent targeting strategy. We would like to thank J. Wittbrodt for scientific discussion and support and members of the Del Bene lab for general discussion and comments. The Del Bene lab “Neural Circuits Development” is part of the Laboratoire d’Excellence (LabEx) entitled DEEP (ANR-11-LABX-0044) and the Ecole des Neurosciences de Paris. T.O.A. was supported by a Boehringer Ingelheim Fonds Ph.D. fellowship. This work has been supported by ATIP/AVENIR program starting grant (FDB), ERC-StG #311159 (FDB), CNRS, INSERM, and Institut Curie.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas O. Auer Ph.D. or Filippo Del Bene Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Auer, T.O., Del Bene, F. (2016). Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome. In: Kawakami, K., Patton, E., Orger, M. (eds) Zebrafish. Methods in Molecular Biology, vol 1451. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3771-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3771-4_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3769-1

  • Online ISBN: 978-1-4939-3771-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics