Skip to main content

CRISPR-Cas9-Mediated Genome Modifications in Zebrafish

  • Protocol
  • First Online:
Genome Editing in Animals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2637))

Abstract

CRISPR-Cas9 genome editing technology has been successfully applied to generate various genetic modifications in zebrafish. The CRISPR-Cas9 system, which originally consisted of three components, CRISPR RNA (crRNA), trans-activating crRNA (tracrRNA), and Cas9, efficiently induces DNA double-strand breaks (DSBs) at targeted genomic loci, often resulting in frameshift-mediated target gene disruption (knockout). However, it remains difficult to perform the targeted integration of exogenous DNA fragments (knock-in) with CRISPR-Cas9. DSBs can be restored through DNA repair mechanisms, such as nonhomologous end joining (NHEJ), microhomology-mediated end joining (MMEJ), and homology-directed repair (HDR). One of our two research groups established a method for the precise MMEJ-mediated targeted integrations of exogenous genes containing homologous microhomology sequences flanking a targeted genomic locus in zebrafish. The other group recently developed a method for knocking in ~200 nt sequences encoding composite tags using long single-stranded DNA (ssDNA) donors. This chapter summarizes the CRISPR-Cas9-mediated genome modification strategy in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hisano Y, Ota S, Kawahara A (2014) Genome editing using artificial site-specific nucleases in zebrafish. Develop Growth Differ 56:26–33

    Article  CAS  Google Scholar 

  2. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    Article  CAS  Google Scholar 

  3. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    Article  CAS  Google Scholar 

  4. Thisse C, Zon LI (2002) Organogenesis-heart and blood formation from the zebrafish point of view. Science 295:457–462

    Article  CAS  Google Scholar 

  5. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527

    Article  CAS  Google Scholar 

  6. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  CAS  Google Scholar 

  7. Hoshijima K, Jurynec MJ, Klatt Shaw D, Jacobi AM, Behlke MA, Grunwals DJ (2019) Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish. Dev Cell 51:645–657

    Article  CAS  Google Scholar 

  8. Kroll F, Powell GT, Ghosh M, Gestri G, Antinucci P, Hearn TJ et al (2021) A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. elife 10:e59683

    Article  CAS  Google Scholar 

  9. Quick RE, Buck LD, Parab S, Tolbert ZR, Matsuoka RL (2021) Highly efficient synthetic CRISPR RNA/Cas9-based mutagenesis for rapid cardiovascular phenotypic screening in F0 zebrafish. Front Cell Dev Biol 9:735598

    Article  Google Scholar 

  10. Suzuki T, Hirai Y, Uehara T, Ohga R, Kosaki K, Kawahara A (2021) Involvement of the zebrafish trrap gene in craniofacial development. Sci Rep 11:24166

    Article  CAS  Google Scholar 

  11. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  CAS  Google Scholar 

  12. Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545

    Article  CAS  Google Scholar 

  13. Ota S, Taimatsu K, Yanagi K, Namiki T, Higashijima S, Kawahara A (2016) Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish. Sci Rep 6:1038

    Article  Google Scholar 

  14. Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H et al (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841

    Article  CAS  Google Scholar 

  15. Ranawakage DC, Okada K, Sugio K, Kawaguchi Y, Kuninobu-Bonkohara Y, Takada T et al (2021) Efficient CRISPR-Cas9-mediated knock-in of composite tags in zebrafish using long ssDNA as a donor. Front Cell Dev Biol 8:598634

    Article  Google Scholar 

  16. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  17. Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3:362–371

    Article  Google Scholar 

Download references

Acknowledgments

The works of Kawahara’s group were supported by the Japan Society for the Promotion of Science (JSPS) and the Japan Agency for Medical Research and Development (AMED). The works of Kamachi’s group were supported by JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kamachi, Y., Kawahara, A. (2023). CRISPR-Cas9-Mediated Genome Modifications in Zebrafish. In: Hatada, I. (eds) Genome Editing in Animals. Methods in Molecular Biology, vol 2637. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3016-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3016-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3015-0

  • Online ISBN: 978-1-0716-3016-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics