Skip to main content

Abstract

Digitalis purpurea L. is one of the main economically viable sources of cardenolides (cardiac glycosides) for the pharmaceutical industry. Nevertheless, production of cardenolides in plants grown by traditional agriculture is not always an efficient process and can be affected by biotic and abiotic factors. This chapter provides two biotechnology strategies for biomass and cardenolide production in D. purpurea. Firstly, we report biomass production using a temporary immersion system (TIS), combined with cardenolide extraction and quantification. Secondly, an efficient protocol for genetic transformation via Agrobacterium tumefaciens is provided. These strategies can be used independently or combined in order to increase the content of cardiac glycosides in D. purpurea and to unravel biosynthetic pathways associated to cardiac glycoside production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sales E, Müller-Uri F, Nebauer SG, Segura J, Kreis W, Arillaga I (2011) Digitalis. In: Kole C (ed) Wild crop relatives: genomic and breeding resources plantation and ornamental crops. Springer, Berlin Heidelberg, pp 73–112

    Chapter  Google Scholar 

  2. Kreis W, May U, Reinhard E (1986) UDP-Glucose: digitoxin 16’-O-glucosyltransferase from suspension cultured Digitalis lanata cells. Plant Cell Rep 5:442–445

    Article  CAS  PubMed  Google Scholar 

  3. Lindemann P, Luckner M (1997) Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata. Phytochemistry 46:507–513

    Article  CAS  Google Scholar 

  4. Shimomura K, Yoshimatsu K, Sauerwein M, Christen P, Toda Y, Aoki T (1992) Production of biologically active compounds by transformed cultures. In: Oono R, Hirabayashi T, Kiruchi S, Handa H, Kahwara S (eds) Plant tissue culture and gene manipulation for breeding and formation of phytochemicals. National Institute of Agrobiological Resources, Tsukuba, Japan, pp 293–296

    Google Scholar 

  5. Hagimori M, Matsumoto T, Obi Y (1983) Effects of mineral salts, initial pH and precursors on digitoxin formation by shoot-forming cultures of Digitalis purpurea L. grown in liquid medium. Agri Biol Chem 47:565–571

    CAS  Google Scholar 

  6. Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Org Cult 81:287–300

    Article  Google Scholar 

  7. Takayama S, Akita M (2005) Practical aspects of bioreactor application in mass propagation of plants. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 61–78

    Chapter  Google Scholar 

  8. Jiménez E (2005) Mass propagation of tropical crops in temporary immersion system. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 197–211

    Google Scholar 

  9. Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 165–195

    Chapter  Google Scholar 

  10. Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621

    Article  CAS  Google Scholar 

  11. Quiala E, Barbón R, Jiménez E, de Feria M, Chávez M, Capote A, Pérez-Alonso N (2006) Biomass production of Cymbopogon citratus (DC) Stapf., a medicinal plant, in temporary immersion systems. In Vitro Cell Dev Biol-Plant 42:298–300

    Google Scholar 

  12. Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tiss Org Cult 106:445–454

    Article  CAS  Google Scholar 

  13. Schumann A, Berkov S, Claus D, Gerth A, Bastida J, Codina C (2012) Production of galanthamine by Leucojum aestivum shoots grown in different bioreactor systems. Appl Biochem Biotechnol 167:1907–1920

    Article  CAS  PubMed  Google Scholar 

  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  15. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  16. Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  17. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  19. Khayat E, Duvdevani A, Lehav E, Ballesteros BA (2004) Somaclonal variation in banana (Musa acuminata cv. Grande Naine). Genetic mechanism, frequency, and application as a tool for clonal selection. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutation. Science Publishers Inc, Plymouth, UK, pp 99–109

    Google Scholar 

  20. Blondeau JM, Castañedo N, González O, Medina R, Silveira E (1999) In vitro evaluation of G-1: a novel antimicrobial compound. Int J Antimicrob Agents 11:163–166

    Article  CAS  PubMed  Google Scholar 

  21. Quiala E, Jimenez E, Feria M, Alvarado Y, Chávez M, Agramonte D, Ramírez D, Acosta M, Pérez N, Capote A (2002) Empleo del Vitrofural en la esterilización química del endospermo artificial de los embriones encapsulados de Saccharum spp. Híbrido var Cuba 87-51. Biotechnol veg 2(4):221–226

    Google Scholar 

  22. Reyes M, Gómez R, Moreno L, Dion D (2014) Secondary multiplication of somatic embryos in banana (Musa spp. AAA) in semisolid medium: effect of the type of culture vessel and sterilization method. J Adv Biotechnol 4:352–357

    Google Scholar 

  23. Ziv M (1990) Vitrification: morphological and physiological disorders of in vitro plants. In: Debergh PC, Zimmerman RH (eds) Micropropagation: technology and application. Kluwe Academic Publishers, Dordrecht, The Netherlands, pp 45–69

    Google Scholar 

  24. Debergh P, Aitken-Christie J, Cohen D, Grout B, Von Arnold S, Zimmerman R, Ziv M (1992) Reconsideration of the term ‘vitrification’ as used in micropropagation. Plant Cell Tiss Org Cult 30:135–140

    Article  Google Scholar 

  25. Kevers C, Franck T, Strasser RJ, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tiss Org Cult 77:181–191

    Article  Google Scholar 

  26. Pérez-Alonso N, Wilken D, Gerth A, Jahn A, Nitzsche HM, Kerns G, Capote A, Jiménez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tiss Org Cult 99:151–156

    Article  Google Scholar 

  27. Bandyopadhyay T, Gangopadhyay G, Poddar R, Mukherjee K (2004) Trichomes their diversity, distribution and density in acclimatization of Teak (Tectona grandis L.) plants grown in vitro. Plant Cell Tiss Org Cult 78:113–121

    Article  Google Scholar 

  28. Eisenbeiβ M, Kreis W, Reinhard E (1999) Cardenolide biosynthesis in light- and dark-grown Digitalis lanata shoot cultures. Plant Physiol Biochem 37:13–23

    Article  Google Scholar 

  29. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacog Rev 1:69–79

    CAS  Google Scholar 

  30. Pérez-Alonso N, Capote A, Gerth A, Jiménez E (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tiss Org Cult 110:153–162

    Article  Google Scholar 

  31. Pérez-Alonso N, Arana F, Capote A, Pérez A, Sosa R, Mollineda A, Jiménez E (2014) Stimulation of cardenolides production in Digitalis purpurea L. shoot cultures by elicitors addition. Rev Colomb Biotechnol 16:51–56

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the support of the EU through the ALFA Network CARIBIOTEC (project AML/B7-311/97/0666/II-0201), the German Ministry for Education and Research (BMBF), the Cuban Ministry of Science, Technology and Environment (CITMA), and the Institutional University Collaboration programme with Universidad Central “Marta Abreu” de Las Villas funded by the Flemish Interuniversity Council (VLIR-IUC UCLV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naivy Pérez-Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pérez-Alonso, N. et al. (2016). Biotechnological Approaches for Biomass and Cardenolide Production in Digitalis purpurea L.. In: Jain, S. (eds) Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, Second Edition. Methods in Molecular Biology, vol 1391. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3332-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3332-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3330-3

  • Online ISBN: 978-1-4939-3332-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics