Skip to main content

Methods for PTEN in Stem Cells and Cancer Stem Cells

  • Protocol
  • First Online:
PTEN

Abstract

PTEN (phosphatase and tensin homologue) is the first tumor suppressor identified to have phosphatase activity and its gene is the second most frequently deleted or mutated tumor-suppressor gene associated with human cancers. Germline PTEN mutations are the cause of three inherited autosomal dominant disorders. Phosphatidylinositol 3,4,5,-triphosphate (PIP3), the product of the PI3 kinase, is one of the key intracellular targets of PTEN’s phosphatase activity, although PTEN’s phosphatase-independent activities have also been identified. PTEN is critical for stem cell maintenance, which contributes to its controlled tumorigenesis. PTEN loss leads the development of cancer stem cells (CSCs) that share properties with somatic stem cells, including the capacity for self-renewal and multi-lineage differentiation. Methods to isolate and functionally test stem cells and CSCs are important for understanding PTEN functions and the development of therapeutic approaches to target CSCs without having adverse effects on normal stem cells. Here, we describe protocols for the isolation and functional analysis of PTEN deficient embryonic stem cells, hematopoietic stem cells and leukemia-initiating cells (LICs), neural stem cells, and prostate stem cells and CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X, Wu H (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 96(11):6199–6204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stiles B, Gilman V, Khanzenzon N, Lesche R, Li A, Qiao R, Liu X, Wu H (2002) Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 22(11):3842–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R, Whale AD, Martinez-Diaz H, Rozengurt N, Cardiff RD, Liu X, Wu H (2003) PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3(2):117–130

    Article  CAS  PubMed  Google Scholar 

  4. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19(4):348–355. doi:10.1038/1235

    Article  PubMed  Google Scholar 

  5. Lindgren AG, Natsuhara K, Tian E, Vincent JJ, Li X, Jiao J, Wu H, Banerjee U, Clark AT (2011) Loss of Pten causes tumor initiation following differentiation of murine pluripotent stem cells due to failed repression of Nanog. PLoS One 6(1), e16478. doi:10.1371/journal.pone.0016478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morrison SJ, Uchida N, Weissman IL (1995) The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11:35–71. doi:10.1146/annurev.cb.11.110195.000343

    Article  CAS  PubMed  Google Scholar 

  7. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, Wu H, Li L (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441(7092):518–522

    Article  CAS  PubMed  Google Scholar 

  9. Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y, Yeh JE, Chen JY, Iruela-Arispe ML, Varella-Garcia M, Wu H (2008) Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453(7194):529–533. doi:10.1038/nature06933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tesio M, Oser GM, Baccelli I, Blanco-Bose W, Wu H, Gothert JR, Kogan SC, Trumpp A (2013) Pten loss in the bone marrow leads to G-CSF-mediated HSC mobilization. J Exp Med 210(11):2337–2349. doi:10.1084/jem.20122768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H, Liu X, Wu H (2002) Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 32(2):148–149

    Article  CAS  PubMed  Google Scholar 

  12. Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ (2012) Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 11(3):415–428. doi:10.1016/j.stem.2012.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JY, Nakada D, Yilmaz OH, Tothova Z, Joseph NM, Lim MS, Gilliland DG, Morrison SJ (2010) mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 7(5):593–605. doi:10.1016/j.stem.2010.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo W, Schubbert S, Chen JY, Valamehr B, Mosessian S, Shi H, Dang NH, Garcia C, Theodoro MF, Varella-Garcia M, Wu H (2011) Suppression of leukemia development caused by PTEN loss. Proc Natl Acad Sci U S A 108(4):1409–1414. doi:10.1073/pnas.1006937108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schubbert S, Cardenas A, Chen H, Garcia C, Guo W, Bradner J, Wu H (2014) Targeting the MYC and PI3K pathways eliminates leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Cancer Res 74(23):7048–7059. doi:10.1158/0008-5472.CAN-14-1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. doi:10.1146/annurev.neuro.051508.135600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Galvez-Contreras AY, Quinones-Hinojosa A, Gonzalez-Perez O (2013) The role of EGFR and ErbB family related proteins in the oligodendrocyte specification in germinal niches of the adult mammalian brain. Front Cell Neurosci 7:258. doi:10.3389/fncel.2013.00258

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gregorian C, Nakashima J, Le Belle J, Ohab J, Kim R, Liu A, Smith KB, Groszer M, Garcia AD, Sofroniew MV, Carmichael ST, Kornblum HI, Liu X, Wu H (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29(6):1874–1886. doi:10.1523/JNEUROSCI.3095-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, Geschwind DH, Liu X, Kornblum HI, Wu H (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci U S A 103(1):111–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294(5549):2186–2189

    Article  CAS  PubMed  Google Scholar 

  21. Yue Q, Groszer M, Gil JS, Berk AJ, Messing A, Wu H, Liu X (2005) PTEN deletion in Bergmann glia leads to premature differentiation and affects laminar organization. Development 132(14):3281–3291. doi:10.1242/dev.01891

    Article  CAS  PubMed  Google Scholar 

  22. English HF, Santen RJ, Isaacs JT (1987) Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11(3):229–242

    Article  CAS  PubMed  Google Scholar 

  23. Bonkhoff H, Remberger K (1996) Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28(2):98–106. doi:10.1002/(SICI)1097-0045(199602)28:2<98::AID-PROS4>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  24. Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D, Shapiro E, Lepor H, Sun TT, Wilson EL (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157(7):1257–1265. doi:10.1083/jcb.200202067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117(Pt 16):3539–3545. doi:10.1242/jcs.01222

    Article  CAS  PubMed  Google Scholar 

  26. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564. doi:10.1126/science.1203543

    Article  CAS  PubMed  Google Scholar 

  27. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22. doi:10.1016/j.ccr.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X, Wu H (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4(3):209–221

    Article  CAS  PubMed  Google Scholar 

  29. Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H (2009) Lin-Sca-1 + CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69(22):8555–8562. doi:10.1158/0008-5472.CAN-08-4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science 329(5991):568–571. doi:10.1126/science.1189992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M, Wu H (2012) Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res 72(7):1878–1889. doi:10.1158/0008-5472.CAN-11-3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON (2008) Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci U S A 105(52):20882–20887. doi:10.1073/pnas.0811411106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi SY, Gout PW, Collins CC, Wang Y (2012) Epithelial immune cell-like transition (EIT): a proposed transdifferentiation process underlying immune-suppressive activity of epithelial cancers. Differentiation 83(5):293–298. doi:10.1016/j.diff.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  34. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, Piccioni F, Silver SJ, Jain M, Pearson D, Kluk MJ, Ott CJ, Shultz LD, Brehm MA, Greiner DL, Gutierrez A, Stegmaier K, Kung AL, Root DE, Bradner JE, Aster JC, Kelliher MA, Bernstein BE (2014) An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. doi:10.1038/ng.2913

    PubMed  PubMed Central  Google Scholar 

  35. Valamehr B, Jonas SJ, Polleux J, Qiao R, Guo S, Gschweng EH, Stiles B, Kam K, Luo TJ, Witte ON, Liu X, Dunn B, Wu H (2008) Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies. Proc Natl Acad Sci U S A 105(38):14459–14464. doi:10.1073/pnas.0807235105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morrison SJ, Lagasse E, Weissman IL (1994) Demonstration that Thy(lo) subsets of mouse bone marrow that express high levels of lineage markers are not significant hematopoietic progenitors. Blood 83(12):3480–3490

    CAS  PubMed  Google Scholar 

  37. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62

    Article  CAS  PubMed  Google Scholar 

  38. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98(25):14541–14546. doi:10.1073/pnas.261562798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121. doi:10.1016/j.cell.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  40. Yilmaz OH, Kiel MJ, Morrison SJ (2006) SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107(3):924–930. doi:10.1182/blood-2005-05-2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lemieux ME, Eaves CJ (1996) Identification of properties that can distinguish primitive populations of stromal-cell-responsive lympho-myeloid cells from cells that are stromal-cell-responsive but lymphoid-restricted and cells that have lympho-myeloid potential but are also capable of competitively repopulating myeloablated recipients. Blood 88(5):1639–1648

    CAS  PubMed  Google Scholar 

  42. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13(5):283–296. doi:10.1038/nrm3330

    CAS  PubMed  Google Scholar 

  43. Shen H, Boyer M, Cheng T (2008) Flow cytometry-based cell cycle measurement of mouse hematopoietic stem and progenitor cells. Methods Mol Biol 430:77–86. doi:10.1007/978-1-59745-182-6_5

    Article  CAS  PubMed  Google Scholar 

  44. Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A 87(22):8736–8740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Till JE, Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  CAS  PubMed  Google Scholar 

  46. Smith LG, Weissman IL, Heimfeld S (1991) Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc Natl Acad Sci U S A 88(7):2788–2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gage GJ, Kipke DR, Shain W (2012) Whole animal perfusion fixation for rodents. J Vis Exp JoVE (65). doi:10.3791/3564

  48. Leong KG, Wang BE, Johnson L, Gao WQ (2008) Generation of a prostate from a single adult stem cell. Nature 456(7223):804–808. doi:10.1038/nature07427

    Article  CAS  PubMed  Google Scholar 

  49. Xin L, Lawson DA, Witte ON (2005) The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A 102(19):6942–6947. doi:10.1073/pnas.0502320102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708. doi:10.1038/sj.onc.1209327

    Article  CAS  PubMed  Google Scholar 

  51. Jiao J, Hindoyan A, Wang S, Tran LM, Goldstein AS, Lawson D, Chen D, Li Y, Guo C, Zhang B, Fazli L, Gleave M, Witte ON, Garraway IP, Wu H (2012) Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One 7(8):e42564. doi:10.1371/journal.pone.0042564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen Y, Zhao J, Luo Y, Wang Y, Wei N, Jiang Y (2012) Isolation and identification of cancer stem-like cells from side population of human prostate cancer cells. J Huazhong Univ Sci Technolog Med Sci 32(5):697–703. doi:10.1007/s11596-012-1020-8

    Article  PubMed  Google Scholar 

  53. Burger PE, Gupta R, Xiong X, Ontiveros CS, Salm SN, Moscatelli D, Wilson EL (2009) High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 27(9):2220–2228. doi:10.1002/stem.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lukacs RU, Goldstein AS, Lawson DA, Cheng D, Witte ON (2010) Isolation, cultivation and characterization of adult murine prostate stem cells. Nat Protoc 5(4):702–713. doi:10.1038/nprot.2010.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, Calhoun-Davis T, Li H, Palapattu GS, Pang S, Lin K, Huang J, Ivanov I, Li W, Suraneni MV, Tang DG (2012) The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 10(5):556–569. doi:10.1016/j.stem.2012.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A 104(1):181–186. doi:10.1073/pnas.0609684104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xin L, Lukacs RU, Lawson DA, Cheng D, Witte ON (2007) Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25(11):2760–2769. doi:10.1634/stemcells.2007-0355

    Article  CAS  PubMed  Google Scholar 

  58. Lukacs RU, Lawson DA, Xin L, Zong Y, Garraway I, Goldstein AS, Memarzadeh S, Witte ON (2008) Epithelial stem cells of the prostate and their role in cancer progression. Cold Spring Harb Symp Quant Biol 73:491–502. doi:10.1101/sqb.2008.73.012

    Article  CAS  PubMed  Google Scholar 

  59. Cunha GR, Lung B (1978) The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 205(2):181–193. doi:10.1002/jez.1402050203

    Article  CAS  PubMed  Google Scholar 

  60. Xin L, Ide H, Kim Y, Dubey P, Witte ON (2003) In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci U S A 100(Suppl 1):11896–11903. doi:10.1073/pnas.1734139100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schubbert, S. et al. (2016). Methods for PTEN in Stem Cells and Cancer Stem Cells. In: Salmena, L., Stambolic, V. (eds) PTEN. Methods in Molecular Biology, vol 1388. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3299-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3299-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3297-9

  • Online ISBN: 978-1-4939-3299-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics