Skip to main content
Log in

Isolation and identification of cancer stem-like cells from side population of human prostate cancer cells

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

It has been widely verified by various sorting methods that cancer stem cells (CSCs) exist in different types of tumor cells or tissues. However, due to lack of specific stem cell surface markers, CSCs are very difficult to be separated from some cancer cells, which becomes the key barrier of functional studies of CSCs. The sorting method by side population cells (SP) lays a solid foundation for in-depth and comprehensive study of CSCs. To identify the existence of SP in prostate cancer cell lines, we applied flow cytometry sorting by SP to cultures of prostate cancer cell lines (TSU, LnCap, and PC-3), and the cancer stem-like characteristics of SP were verified through experiments in vitro and in vivo. The proportion of SP in TSU cells was calculated to be 1.60%±0.40% \(\left( {\bar x \pm s} \right)\), and that in PC-3 and LnCap cells was calculated to be 0.80%±0.05% and 0.60%±0.20%, respectively. The colony formation assay demonstrated that the colony formation rate of SP to non-SP sorted from TSU via flow cytometry was 0.495±0.038 to 0.177±0.029 in 500 cells, 0.505±0.026 to 0.169±0.024 in 250 cells, and 0.088±0.016 to 0.043±0.012 in 125 cells respectively. In the in vivo experiments, tumors were observed in all the mice on the 10th day after injecting 50 000 cells subcutaneously in SP group, whereas when 5×106 cells were injected in non-SP group, tumors were developed in only 4 out of 8 mice until the 3rd week before the end of the experiment. Our results revealed that prostate cancer cells contain a small subset of cells, called SP, possessing much greater capacity of colony formation and tumorigenic potential than non-SP. These suggest that SP in prostate cancer cells may play a key role in the self-renewal and proliferation, and have the characteristics of cancer stem-like cells. Dissecting these features will provide a new understanding of the function of prostate CSCs in tumorigenicity and transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta S, Takebe N, LoRusso P. Targeting the Hedgehog pathway in cancer. Ther Adv Med Oncol, 2010,2(4):237–250

    Article  PubMed  CAS  Google Scholar 

  2. Sun JG, Liao RX, Qiu J, et al. Microarray-based analysis of microRNA expression in breast cancer stem cells. J Exp Clin Cancer Res, 2010,29(174):1–8

    Google Scholar 

  3. Li R, Qian N, Tao K, et al. MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res, 2010,29(1):169

    Article  PubMed  Google Scholar 

  4. Oishi N, Wang XW. Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci, 2011,7(5):517–535

    Article  PubMed  CAS  Google Scholar 

  5. Yang JP, Liu Y, Zhong W, et al. Chemoresistance of CD133+ cancer stem cells in laryngeal carcinoma. Chin Med J (Engl), 2011,124(7):1055–1060

    CAS  Google Scholar 

  6. Scaldaferri ML, Fera S, Grisanti L, et al. Identification of side population cells in mouse primordial germ cells and prenatal testis. Int J Dev Biol, 2011,55(2):209–214

    Article  PubMed  CAS  Google Scholar 

  7. Takao T, Asanoma K, Kato K, et al. Isolation and characterization of human trophoblast side-population (SP) cells in primary villous cytotrophoblasts and HTR-8/SVneo cell line. PLoS ONE, 2011,6(7):1–14

    Article  Google Scholar 

  8. Goodell MA, Brose K, Paradis G, et al. Isolation and functional properfies of murine hematopoietic stem cells that are replicating in vivo. J Exp Med, 1996,183(4):1797–1806

    Article  PubMed  CAS  Google Scholar 

  9. Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin, 2009,59:225–249

    Article  PubMed  Google Scholar 

  10. Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol, 2007,21(12):2855–2863

    Article  PubMed  CAS  Google Scholar 

  11. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med, 2004,10(1):33–39

    Article  PubMed  Google Scholar 

  12. Maugeri-Saccà M, De Maria R. Translating basic research in cancer patient care. Ann Ist Super Sanita, 2011,47(1):64–71

    PubMed  Google Scholar 

  13. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008,8(10):755–768

    Article  PubMed  CAS  Google Scholar 

  14. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA, 2007,104(24):10 158–10 163

    Article  CAS  Google Scholar 

  15. Kusumbe AP, Mali AM, Bapat SA. CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells, 2009,27(3):498–508

    Article  PubMed  CAS  Google Scholar 

  16. Jiang F, Qiu Q, Khanna A, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res, 2009,7(3):330–338

    Article  PubMed  CAS  Google Scholar 

  17. Friel AM, Sergent PA, Patnaude C, et al. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle, 2008, 7(2):242–249

    Article  PubMed  CAS  Google Scholar 

  18. Mouthon MA, Fouchet P, Mathieu C, et al. Neural stem cells from mouse forebrain are contained in a population distinct from the ‘side population’. J Neurochem, 2006,99(3):807–817

    Article  PubMed  CAS  Google Scholar 

  19. Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med, 1997,3(12):1337–1345

    Article  PubMed  CAS  Google Scholar 

  20. Shimano K, Satake M, Okaya A, et al. Hepatic oval cells have the side population phenotype defined by expression of ATP binding cassette transporter ABCG2/BCRP1. Am J Pathol, 2003,163(1):3–9

    Article  PubMed  CAS  Google Scholar 

  21. Summer R, Kotton DN, Sun X, et al. Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol, 2003,285(1):L97–104

    PubMed  CAS  Google Scholar 

  22. Larderet G, Fortunel NO, Vaigot P, et al. Human side population keratinocytes exhibit long-term proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells, 2006,24(4):965–974

    Article  PubMed  CAS  Google Scholar 

  23. Alvi AJ, Clayton H, Joshi C, et al. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res, 2003,5(1):R1–824

    Article  PubMed  Google Scholar 

  24. Bapai SA, Mali AM, Koppikar CB, et al. Stem and progenitor-lik e cells contribute to the a ggressive behave of human epithelial ovarian cancer. Cancer Res, 2005,65(8):3025–3029

    Google Scholar 

  25. Wang J, Guo LP, Chen LZ, et al. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res, 2007, 67(8):3716–3724

    Article  PubMed  CAS  Google Scholar 

  26. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature, 2004,432(7015):396–401

    Article  PubMed  CAS  Google Scholar 

  27. Bleau AM, Huse JT, Eric C, et al. The ABCG2 resistance network of glioblastoma. Cell Cycle, 2009,8(18):2936–2944

    Article  PubMed  Google Scholar 

  28. Fukaya R, Ohta S, Yamaguchi M, et al. Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1. Cancer Lett, 2010,291(2):150–157

    Article  PubMed  CAS  Google Scholar 

  29. Yang M, Yan M, Zhang R, et al. Side population cells isolated from human osteosarcoma are enriched with tumor-initiating cells. Cancer Sci, 2011,102(10):1774–1781

    Article  PubMed  CAS  Google Scholar 

  30. Murase M, Kano M, Tsukahara T, et al. Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas. Br J Cancer, 2009,101(8):1425–1432

    Article  PubMed  CAS  Google Scholar 

  31. Wang B, Yang H, Huang YZ, et al. Biologic characteristics of the side population of human small cell lung cancer cell line H446. Chin J Cancer, 2010,29(3):254–260

    Article  PubMed  Google Scholar 

  32. Salcido CD, Larochelle A, Taylor BJ, et al. Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer, 2010,102(11):1636–1644

    Article  PubMed  CAS  Google Scholar 

  33. Harris MA, Yang H, Low BE, et al. Cancer stem cells are enriched in the side-population cells in a mouse model of glioma. Cancer Res, 2008, 68(24):10051–10059

    Article  PubMed  CAS  Google Scholar 

  34. Kong QL, Hu LJ, Cao JY, et al. Epstein-barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog, 2010,6(6):1371

    Article  Google Scholar 

  35. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA, 2003,100(11):6487–6492

    Article  PubMed  CAS  Google Scholar 

  36. Shinohara T, Ishii K, Kanatsu-Shinohara M. Unstable side population phenotype of mouse spermatogonial stem cells in vitro. J Reprod Dev, 2011,57(2):288–295

    Article  PubMed  CAS  Google Scholar 

  37. Pearce DJ, Ridler CM, Simpson C, et al. Multiparameter analysis of murine bone marrow side population cells. Blood, 2004,103(7):2541–2546

    Article  PubMed  CAS  Google Scholar 

  38. Morita Y, Ema H, Yamazaki S, et al. Non-side-population hematopoietic stem cells in mouse bone marrow. Blood, 2006,108(8):2850–2856

    Article  PubMed  CAS  Google Scholar 

  39. Plateta N, Mayolb JF, Berger F, et al. Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Letters, 2007,581(7):1435–1440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongguang Jiang  (姜永光).

Additional information

This project was supported by Beijing Natural Science Foundation (No. 7102047).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zhao, J., Luo, Y. et al. Isolation and identification of cancer stem-like cells from side population of human prostate cancer cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 32, 697–703 (2012). https://doi.org/10.1007/s11596-012-1020-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-012-1020-8

Key words

Navigation