Skip to main content

Transient Expression of Mammalian Genes in N. benthamiana to Modulate N-Glycosylation

  • Protocol
Recombinant Proteins from Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1385))

Abstract

Nicotiana benthamiana has shown great success as a platform for the production of recombinant proteins. Here, we describe methods to transiently express high levels of recombinant proteins and simultaneously modulate their glycosylation pattern toward human-like structures. The method aims to generate recombinant proteins with a targeted largely homogeneous glycosylation profile for structure–function studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castilho A, Steinkellner H (2012) Glyco-engineering in plants to produce human-like N-glycan structures. Biotechnol J 7:1088–1098

    Article  CAS  PubMed  Google Scholar 

  2. Bosch D, Castilho A, Loos A, Schots A, Steinkellner H (2013) N-glycosylation of plant-produced recombinant proteins. Curr Pharm Des 19:5503–5512

    Article  CAS  PubMed  Google Scholar 

  3. Gleba YY, Tuse D, Giritch A (2014) Plant viral vectors for delivery by agrobacterium. Curr Top Microbiol Immunol 375:155–192

    CAS  PubMed  Google Scholar 

  4. Varki A (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446:1023–1029

    Article  CAS  PubMed  Google Scholar 

  5. Grabenhorst E, Conradt HS (1999) The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the Golgi. J Biol Chem 274:36107–36116

    Article  CAS  PubMed  Google Scholar 

  6. Saint-Jore-Dupas C, Nebenfuhr A, Boulaflous A et al (2006) Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18:3182–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schoberer J, Vavra U, Stadlmann J et al (2009) Sub-compartmental organization of Golgi-resident N-glycan processing enzymes in plants. Traffic 10:101–115

    Article  CAS  PubMed  Google Scholar 

  8. Schoberer J, Strasser R (2011) Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes. Mol Plant 4:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castilho A, Gattinger P, Grass J et al (2011) N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strasser R, Castilho A, Stadlmann J et al (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagels B, Van Damme EJ, Callewaert N et al (2012) Introduction of tri-antennary N-glycans in Arabidopsis thaliana plants. Plant Sci 185–186:161–168

    Article  PubMed  Google Scholar 

  12. Nagels B, Van Damme EJ, Callewaert N et al (2012) Biologically active, magnICON(R)-expressed EPO-Fc from stably transformed Nicotiana benthamiana plants presenting tetra-antennary N-glycan structures. J Biotechnol 160:242–250

    Article  CAS  PubMed  Google Scholar 

  13. Nagels B, Van Damme EJ, Pabst M et al (2011) Production of complex multiantennary N-glycans in Nicotiana benthamiana plants. Plant Physiol 155:1103–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frey AD, Karg SR, Kallio PT (2009) Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation. Plant Biotechnol J 7:33–48

    Article  CAS  PubMed  Google Scholar 

  15. Karg SR, Frey AD, Kallio PT (2010) Reduction of N-linked xylose and fucose by expression of rat beta1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression. J Biotechnol 146:54–65

    Article  CAS  PubMed  Google Scholar 

  16. Marillonnet S, Giritch A, Gils M et al (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci U S A 101:6852–6857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marillonnet S, Thoeringer C, Kandzia R et al (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    Article  CAS  PubMed  Google Scholar 

  18. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    Article  CAS  PubMed  Google Scholar 

  19. Strasser R, Stadlmann J, Schähs M et al (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402

    Article  CAS  PubMed  Google Scholar 

  20. Castilho A, Neumann L, Gattinger P et al (2013) Generation of biologically active multi-sialylated recombinant human EPOFc in plants. PLoS One 8:e54836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chung SM, Frankman EL, Tzfira T (2005) A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10:357–361

    Article  CAS  PubMed  Google Scholar 

  22. Werner S, Engler C, Weber E et al (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3:38–43

    PubMed  Google Scholar 

  23. Schneider JD, Marillonnet S, Castilho A et al (2014) Oligomerization status influences subcellular deposition and glycosylation of recombinant butyrylcholinesterase in Nicotiana benthamiana. Plant Biotechnol J 12(7):832–839. doi:10.1111/pbi.12184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  PubMed  PubMed Central  Google Scholar 

  25. Engler C, Marillonnet S (2013) Combinatorial DNA assembly using Golden Gate cloning. Methods Mol Biol 1073:141–156

    Article  CAS  PubMed  Google Scholar 

  26. Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145:1118–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarrion-Perdigones A, Falconi EE, Zandalinas SI et al (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider JD, Castilho A, Neumann L et al (2014) Expression of human butyrylcholinesterase with an engineered glycosylation profile resembling the plasma-derived orthologue. Biotechnol J 9:501–510

    Article  CAS  PubMed  Google Scholar 

  29. Stadlmann J, Pabst M, Kolarich D et al (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–2871

    Article  CAS  PubMed  Google Scholar 

  30. Wilson IB, Zeleny R, Kolarich D, Staudacher E et al (2001) Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions. Glycobiology 11:261–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Austrian Research Promotion Agency (FFG) Laura Bassi Centre of Expertise PlantBioP (Number 822757), and the Austrian Science Fund (FWF; Grant Number L575-B13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herta Steinkellner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Castilho, A., Steinkellner, H. (2016). Transient Expression of Mammalian Genes in N. benthamiana to Modulate N-Glycosylation. In: MacDonald, J., Kolotilin, I., Menassa, R. (eds) Recombinant Proteins from Plants. Methods in Molecular Biology, vol 1385. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3289-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3289-4_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3288-7

  • Online ISBN: 978-1-4939-3289-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics